| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rabn0 |
|- ( { a e. A | -. ( F ` a ) = a } =/= (/) <-> E. a e. A -. ( F ` a ) = a ) |
| 2 |
|
rexnal |
|- ( E. a e. A -. ( F ` a ) = a <-> -. A. a e. A ( F ` a ) = a ) |
| 3 |
1 2
|
bitri |
|- ( { a e. A | -. ( F ` a ) = a } =/= (/) <-> -. A. a e. A ( F ` a ) = a ) |
| 4 |
|
simpl1 |
|- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ { a e. A | -. ( F ` a ) = a } =/= (/) ) -> R We A ) |
| 5 |
|
simpl2 |
|- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ { a e. A | -. ( F ` a ) = a } =/= (/) ) -> R Se A ) |
| 6 |
|
ssrab2 |
|- { a e. A | -. ( F ` a ) = a } C_ A |
| 7 |
6
|
a1i |
|- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ { a e. A | -. ( F ` a ) = a } =/= (/) ) -> { a e. A | -. ( F ` a ) = a } C_ A ) |
| 8 |
|
simpr |
|- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ { a e. A | -. ( F ` a ) = a } =/= (/) ) -> { a e. A | -. ( F ` a ) = a } =/= (/) ) |
| 9 |
|
wereu2 |
|- ( ( ( R We A /\ R Se A ) /\ ( { a e. A | -. ( F ` a ) = a } C_ A /\ { a e. A | -. ( F ` a ) = a } =/= (/) ) ) -> E! b e. { a e. A | -. ( F ` a ) = a } A. c e. { a e. A | -. ( F ` a ) = a } -. c R b ) |
| 10 |
4 5 7 8 9
|
syl22anc |
|- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ { a e. A | -. ( F ` a ) = a } =/= (/) ) -> E! b e. { a e. A | -. ( F ` a ) = a } A. c e. { a e. A | -. ( F ` a ) = a } -. c R b ) |
| 11 |
|
reurex |
|- ( E! b e. { a e. A | -. ( F ` a ) = a } A. c e. { a e. A | -. ( F ` a ) = a } -. c R b -> E. b e. { a e. A | -. ( F ` a ) = a } A. c e. { a e. A | -. ( F ` a ) = a } -. c R b ) |
| 12 |
10 11
|
syl |
|- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ { a e. A | -. ( F ` a ) = a } =/= (/) ) -> E. b e. { a e. A | -. ( F ` a ) = a } A. c e. { a e. A | -. ( F ` a ) = a } -. c R b ) |
| 13 |
12
|
ex |
|- ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) -> ( { a e. A | -. ( F ` a ) = a } =/= (/) -> E. b e. { a e. A | -. ( F ` a ) = a } A. c e. { a e. A | -. ( F ` a ) = a } -. c R b ) ) |
| 14 |
|
fveq2 |
|- ( a = b -> ( F ` a ) = ( F ` b ) ) |
| 15 |
|
id |
|- ( a = b -> a = b ) |
| 16 |
14 15
|
eqeq12d |
|- ( a = b -> ( ( F ` a ) = a <-> ( F ` b ) = b ) ) |
| 17 |
16
|
notbid |
|- ( a = b -> ( -. ( F ` a ) = a <-> -. ( F ` b ) = b ) ) |
| 18 |
17
|
elrab |
|- ( b e. { a e. A | -. ( F ` a ) = a } <-> ( b e. A /\ -. ( F ` b ) = b ) ) |
| 19 |
|
fveq2 |
|- ( a = c -> ( F ` a ) = ( F ` c ) ) |
| 20 |
|
id |
|- ( a = c -> a = c ) |
| 21 |
19 20
|
eqeq12d |
|- ( a = c -> ( ( F ` a ) = a <-> ( F ` c ) = c ) ) |
| 22 |
21
|
notbid |
|- ( a = c -> ( -. ( F ` a ) = a <-> -. ( F ` c ) = c ) ) |
| 23 |
22
|
ralrab |
|- ( A. c e. { a e. A | -. ( F ` a ) = a } -. c R b <-> A. c e. A ( -. ( F ` c ) = c -> -. c R b ) ) |
| 24 |
|
con34b |
|- ( ( c R b -> ( F ` c ) = c ) <-> ( -. ( F ` c ) = c -> -. c R b ) ) |
| 25 |
24
|
bicomi |
|- ( ( -. ( F ` c ) = c -> -. c R b ) <-> ( c R b -> ( F ` c ) = c ) ) |
| 26 |
25
|
ralbii |
|- ( A. c e. A ( -. ( F ` c ) = c -> -. c R b ) <-> A. c e. A ( c R b -> ( F ` c ) = c ) ) |
| 27 |
23 26
|
bitri |
|- ( A. c e. { a e. A | -. ( F ` a ) = a } -. c R b <-> A. c e. A ( c R b -> ( F ` c ) = c ) ) |
| 28 |
|
simpl3 |
|- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> F Isom R , R ( A , A ) ) |
| 29 |
|
isof1o |
|- ( F Isom R , R ( A , A ) -> F : A -1-1-onto-> A ) |
| 30 |
28 29
|
syl |
|- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> F : A -1-1-onto-> A ) |
| 31 |
|
f1of |
|- ( F : A -1-1-onto-> A -> F : A --> A ) |
| 32 |
30 31
|
syl |
|- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> F : A --> A ) |
| 33 |
|
simprl |
|- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> b e. A ) |
| 34 |
32 33
|
ffvelcdmd |
|- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( F ` b ) e. A ) |
| 35 |
|
breq1 |
|- ( c = ( F ` b ) -> ( c R b <-> ( F ` b ) R b ) ) |
| 36 |
|
fveq2 |
|- ( c = ( F ` b ) -> ( F ` c ) = ( F ` ( F ` b ) ) ) |
| 37 |
|
id |
|- ( c = ( F ` b ) -> c = ( F ` b ) ) |
| 38 |
36 37
|
eqeq12d |
|- ( c = ( F ` b ) -> ( ( F ` c ) = c <-> ( F ` ( F ` b ) ) = ( F ` b ) ) ) |
| 39 |
35 38
|
imbi12d |
|- ( c = ( F ` b ) -> ( ( c R b -> ( F ` c ) = c ) <-> ( ( F ` b ) R b -> ( F ` ( F ` b ) ) = ( F ` b ) ) ) ) |
| 40 |
39
|
rspcv |
|- ( ( F ` b ) e. A -> ( A. c e. A ( c R b -> ( F ` c ) = c ) -> ( ( F ` b ) R b -> ( F ` ( F ` b ) ) = ( F ` b ) ) ) ) |
| 41 |
34 40
|
syl |
|- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( A. c e. A ( c R b -> ( F ` c ) = c ) -> ( ( F ` b ) R b -> ( F ` ( F ` b ) ) = ( F ` b ) ) ) ) |
| 42 |
41
|
com23 |
|- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( ( F ` b ) R b -> ( A. c e. A ( c R b -> ( F ` c ) = c ) -> ( F ` ( F ` b ) ) = ( F ` b ) ) ) ) |
| 43 |
42
|
imp |
|- ( ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) /\ ( F ` b ) R b ) -> ( A. c e. A ( c R b -> ( F ` c ) = c ) -> ( F ` ( F ` b ) ) = ( F ` b ) ) ) |
| 44 |
|
f1of1 |
|- ( F : A -1-1-onto-> A -> F : A -1-1-> A ) |
| 45 |
30 44
|
syl |
|- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> F : A -1-1-> A ) |
| 46 |
|
f1fveq |
|- ( ( F : A -1-1-> A /\ ( ( F ` b ) e. A /\ b e. A ) ) -> ( ( F ` ( F ` b ) ) = ( F ` b ) <-> ( F ` b ) = b ) ) |
| 47 |
45 34 33 46
|
syl12anc |
|- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( ( F ` ( F ` b ) ) = ( F ` b ) <-> ( F ` b ) = b ) ) |
| 48 |
|
pm2.21 |
|- ( -. ( F ` b ) = b -> ( ( F ` b ) = b -> A. a e. A ( F ` a ) = a ) ) |
| 49 |
48
|
ad2antll |
|- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( ( F ` b ) = b -> A. a e. A ( F ` a ) = a ) ) |
| 50 |
47 49
|
sylbid |
|- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( ( F ` ( F ` b ) ) = ( F ` b ) -> A. a e. A ( F ` a ) = a ) ) |
| 51 |
50
|
adantr |
|- ( ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) /\ ( F ` b ) R b ) -> ( ( F ` ( F ` b ) ) = ( F ` b ) -> A. a e. A ( F ` a ) = a ) ) |
| 52 |
43 51
|
syld |
|- ( ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) /\ ( F ` b ) R b ) -> ( A. c e. A ( c R b -> ( F ` c ) = c ) -> A. a e. A ( F ` a ) = a ) ) |
| 53 |
|
f1ocnv |
|- ( F : A -1-1-onto-> A -> `' F : A -1-1-onto-> A ) |
| 54 |
|
f1of |
|- ( `' F : A -1-1-onto-> A -> `' F : A --> A ) |
| 55 |
30 53 54
|
3syl |
|- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> `' F : A --> A ) |
| 56 |
55 33
|
ffvelcdmd |
|- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( `' F ` b ) e. A ) |
| 57 |
56
|
adantr |
|- ( ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) /\ b R ( F ` b ) ) -> ( `' F ` b ) e. A ) |
| 58 |
|
isorel |
|- ( ( F Isom R , R ( A , A ) /\ ( ( `' F ` b ) e. A /\ b e. A ) ) -> ( ( `' F ` b ) R b <-> ( F ` ( `' F ` b ) ) R ( F ` b ) ) ) |
| 59 |
28 56 33 58
|
syl12anc |
|- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( ( `' F ` b ) R b <-> ( F ` ( `' F ` b ) ) R ( F ` b ) ) ) |
| 60 |
|
f1ocnvfv2 |
|- ( ( F : A -1-1-onto-> A /\ b e. A ) -> ( F ` ( `' F ` b ) ) = b ) |
| 61 |
30 33 60
|
syl2anc |
|- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( F ` ( `' F ` b ) ) = b ) |
| 62 |
61
|
breq1d |
|- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( ( F ` ( `' F ` b ) ) R ( F ` b ) <-> b R ( F ` b ) ) ) |
| 63 |
59 62
|
bitr2d |
|- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( b R ( F ` b ) <-> ( `' F ` b ) R b ) ) |
| 64 |
63
|
biimpa |
|- ( ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) /\ b R ( F ` b ) ) -> ( `' F ` b ) R b ) |
| 65 |
|
breq1 |
|- ( c = ( `' F ` b ) -> ( c R b <-> ( `' F ` b ) R b ) ) |
| 66 |
|
fveq2 |
|- ( c = ( `' F ` b ) -> ( F ` c ) = ( F ` ( `' F ` b ) ) ) |
| 67 |
|
id |
|- ( c = ( `' F ` b ) -> c = ( `' F ` b ) ) |
| 68 |
66 67
|
eqeq12d |
|- ( c = ( `' F ` b ) -> ( ( F ` c ) = c <-> ( F ` ( `' F ` b ) ) = ( `' F ` b ) ) ) |
| 69 |
65 68
|
imbi12d |
|- ( c = ( `' F ` b ) -> ( ( c R b -> ( F ` c ) = c ) <-> ( ( `' F ` b ) R b -> ( F ` ( `' F ` b ) ) = ( `' F ` b ) ) ) ) |
| 70 |
69
|
rspcv |
|- ( ( `' F ` b ) e. A -> ( A. c e. A ( c R b -> ( F ` c ) = c ) -> ( ( `' F ` b ) R b -> ( F ` ( `' F ` b ) ) = ( `' F ` b ) ) ) ) |
| 71 |
70
|
com23 |
|- ( ( `' F ` b ) e. A -> ( ( `' F ` b ) R b -> ( A. c e. A ( c R b -> ( F ` c ) = c ) -> ( F ` ( `' F ` b ) ) = ( `' F ` b ) ) ) ) |
| 72 |
57 64 71
|
sylc |
|- ( ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) /\ b R ( F ` b ) ) -> ( A. c e. A ( c R b -> ( F ` c ) = c ) -> ( F ` ( `' F ` b ) ) = ( `' F ` b ) ) ) |
| 73 |
|
simplrr |
|- ( ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) /\ ( F ` ( `' F ` b ) ) = ( `' F ` b ) ) -> -. ( F ` b ) = b ) |
| 74 |
|
fveq2 |
|- ( ( F ` ( `' F ` b ) ) = ( `' F ` b ) -> ( F ` ( F ` ( `' F ` b ) ) ) = ( F ` ( `' F ` b ) ) ) |
| 75 |
74
|
adantl |
|- ( ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) /\ ( F ` ( `' F ` b ) ) = ( `' F ` b ) ) -> ( F ` ( F ` ( `' F ` b ) ) ) = ( F ` ( `' F ` b ) ) ) |
| 76 |
61
|
fveq2d |
|- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( F ` ( F ` ( `' F ` b ) ) ) = ( F ` b ) ) |
| 77 |
76
|
adantr |
|- ( ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) /\ ( F ` ( `' F ` b ) ) = ( `' F ` b ) ) -> ( F ` ( F ` ( `' F ` b ) ) ) = ( F ` b ) ) |
| 78 |
61
|
adantr |
|- ( ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) /\ ( F ` ( `' F ` b ) ) = ( `' F ` b ) ) -> ( F ` ( `' F ` b ) ) = b ) |
| 79 |
75 77 78
|
3eqtr3d |
|- ( ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) /\ ( F ` ( `' F ` b ) ) = ( `' F ` b ) ) -> ( F ` b ) = b ) |
| 80 |
73 79 48
|
sylc |
|- ( ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) /\ ( F ` ( `' F ` b ) ) = ( `' F ` b ) ) -> A. a e. A ( F ` a ) = a ) |
| 81 |
80
|
ex |
|- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( ( F ` ( `' F ` b ) ) = ( `' F ` b ) -> A. a e. A ( F ` a ) = a ) ) |
| 82 |
81
|
adantr |
|- ( ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) /\ b R ( F ` b ) ) -> ( ( F ` ( `' F ` b ) ) = ( `' F ` b ) -> A. a e. A ( F ` a ) = a ) ) |
| 83 |
72 82
|
syld |
|- ( ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) /\ b R ( F ` b ) ) -> ( A. c e. A ( c R b -> ( F ` c ) = c ) -> A. a e. A ( F ` a ) = a ) ) |
| 84 |
|
simprr |
|- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> -. ( F ` b ) = b ) |
| 85 |
|
simpl1 |
|- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> R We A ) |
| 86 |
|
weso |
|- ( R We A -> R Or A ) |
| 87 |
85 86
|
syl |
|- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> R Or A ) |
| 88 |
|
sotrieq |
|- ( ( R Or A /\ ( ( F ` b ) e. A /\ b e. A ) ) -> ( ( F ` b ) = b <-> -. ( ( F ` b ) R b \/ b R ( F ` b ) ) ) ) |
| 89 |
87 34 33 88
|
syl12anc |
|- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( ( F ` b ) = b <-> -. ( ( F ` b ) R b \/ b R ( F ` b ) ) ) ) |
| 90 |
89
|
con2bid |
|- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( ( ( F ` b ) R b \/ b R ( F ` b ) ) <-> -. ( F ` b ) = b ) ) |
| 91 |
84 90
|
mpbird |
|- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( ( F ` b ) R b \/ b R ( F ` b ) ) ) |
| 92 |
52 83 91
|
mpjaodan |
|- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( A. c e. A ( c R b -> ( F ` c ) = c ) -> A. a e. A ( F ` a ) = a ) ) |
| 93 |
27 92
|
biimtrid |
|- ( ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) /\ ( b e. A /\ -. ( F ` b ) = b ) ) -> ( A. c e. { a e. A | -. ( F ` a ) = a } -. c R b -> A. a e. A ( F ` a ) = a ) ) |
| 94 |
93
|
ex |
|- ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) -> ( ( b e. A /\ -. ( F ` b ) = b ) -> ( A. c e. { a e. A | -. ( F ` a ) = a } -. c R b -> A. a e. A ( F ` a ) = a ) ) ) |
| 95 |
18 94
|
biimtrid |
|- ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) -> ( b e. { a e. A | -. ( F ` a ) = a } -> ( A. c e. { a e. A | -. ( F ` a ) = a } -. c R b -> A. a e. A ( F ` a ) = a ) ) ) |
| 96 |
95
|
rexlimdv |
|- ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) -> ( E. b e. { a e. A | -. ( F ` a ) = a } A. c e. { a e. A | -. ( F ` a ) = a } -. c R b -> A. a e. A ( F ` a ) = a ) ) |
| 97 |
13 96
|
syld |
|- ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) -> ( { a e. A | -. ( F ` a ) = a } =/= (/) -> A. a e. A ( F ` a ) = a ) ) |
| 98 |
3 97
|
biimtrrid |
|- ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) -> ( -. A. a e. A ( F ` a ) = a -> A. a e. A ( F ` a ) = a ) ) |
| 99 |
98
|
pm2.18d |
|- ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) -> A. a e. A ( F ` a ) = a ) |
| 100 |
|
fvresi |
|- ( a e. A -> ( ( _I |` A ) ` a ) = a ) |
| 101 |
100
|
eqeq2d |
|- ( a e. A -> ( ( F ` a ) = ( ( _I |` A ) ` a ) <-> ( F ` a ) = a ) ) |
| 102 |
101
|
biimprd |
|- ( a e. A -> ( ( F ` a ) = a -> ( F ` a ) = ( ( _I |` A ) ` a ) ) ) |
| 103 |
102
|
ralimia |
|- ( A. a e. A ( F ` a ) = a -> A. a e. A ( F ` a ) = ( ( _I |` A ) ` a ) ) |
| 104 |
99 103
|
syl |
|- ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) -> A. a e. A ( F ` a ) = ( ( _I |` A ) ` a ) ) |
| 105 |
29
|
3ad2ant3 |
|- ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) -> F : A -1-1-onto-> A ) |
| 106 |
|
f1ofn |
|- ( F : A -1-1-onto-> A -> F Fn A ) |
| 107 |
105 106
|
syl |
|- ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) -> F Fn A ) |
| 108 |
|
fnresi |
|- ( _I |` A ) Fn A |
| 109 |
108
|
a1i |
|- ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) -> ( _I |` A ) Fn A ) |
| 110 |
|
eqfnfv |
|- ( ( F Fn A /\ ( _I |` A ) Fn A ) -> ( F = ( _I |` A ) <-> A. a e. A ( F ` a ) = ( ( _I |` A ) ` a ) ) ) |
| 111 |
107 109 110
|
syl2anc |
|- ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) -> ( F = ( _I |` A ) <-> A. a e. A ( F ` a ) = ( ( _I |` A ) ` a ) ) ) |
| 112 |
104 111
|
mpbird |
|- ( ( R We A /\ R Se A /\ F Isom R , R ( A , A ) ) -> F = ( _I |` A ) ) |