Step |
Hyp |
Ref |
Expression |
1 |
|
wepwso.t |
|- T = { <. x , y >. | E. z e. A ( ( z e. y /\ -. z e. x ) /\ A. w e. A ( w R z -> ( w e. x <-> w e. y ) ) ) } |
2 |
|
wepwso.u |
|- U = { <. x , y >. | E. z e. A ( ( x ` z ) _E ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } |
3 |
|
wepwso.f |
|- F = ( a e. ( 2o ^m A ) |-> ( `' a " { 1o } ) ) |
4 |
3
|
pw2f1o2 |
|- ( A e. _V -> F : ( 2o ^m A ) -1-1-onto-> ~P A ) |
5 |
|
fvex |
|- ( c ` z ) e. _V |
6 |
5
|
epeli |
|- ( ( b ` z ) _E ( c ` z ) <-> ( b ` z ) e. ( c ` z ) ) |
7 |
|
elmapi |
|- ( b e. ( 2o ^m A ) -> b : A --> 2o ) |
8 |
7
|
ad2antrl |
|- ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) -> b : A --> 2o ) |
9 |
8
|
ffvelrnda |
|- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> ( b ` z ) e. 2o ) |
10 |
|
elmapi |
|- ( c e. ( 2o ^m A ) -> c : A --> 2o ) |
11 |
10
|
ad2antll |
|- ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) -> c : A --> 2o ) |
12 |
11
|
ffvelrnda |
|- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> ( c ` z ) e. 2o ) |
13 |
|
n0i |
|- ( ( b ` z ) e. ( c ` z ) -> -. ( c ` z ) = (/) ) |
14 |
13
|
adantl |
|- ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ ( b ` z ) e. ( c ` z ) ) -> -. ( c ` z ) = (/) ) |
15 |
|
elpri |
|- ( ( c ` z ) e. { (/) , 1o } -> ( ( c ` z ) = (/) \/ ( c ` z ) = 1o ) ) |
16 |
|
df2o3 |
|- 2o = { (/) , 1o } |
17 |
15 16
|
eleq2s |
|- ( ( c ` z ) e. 2o -> ( ( c ` z ) = (/) \/ ( c ` z ) = 1o ) ) |
18 |
17
|
ad2antlr |
|- ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ ( b ` z ) e. ( c ` z ) ) -> ( ( c ` z ) = (/) \/ ( c ` z ) = 1o ) ) |
19 |
|
orel1 |
|- ( -. ( c ` z ) = (/) -> ( ( ( c ` z ) = (/) \/ ( c ` z ) = 1o ) -> ( c ` z ) = 1o ) ) |
20 |
14 18 19
|
sylc |
|- ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ ( b ` z ) e. ( c ` z ) ) -> ( c ` z ) = 1o ) |
21 |
|
1on |
|- 1o e. On |
22 |
21
|
onirri |
|- -. 1o e. 1o |
23 |
|
eleq12 |
|- ( ( ( b ` z ) = 1o /\ ( c ` z ) = 1o ) -> ( ( b ` z ) e. ( c ` z ) <-> 1o e. 1o ) ) |
24 |
23
|
biimpd |
|- ( ( ( b ` z ) = 1o /\ ( c ` z ) = 1o ) -> ( ( b ` z ) e. ( c ` z ) -> 1o e. 1o ) ) |
25 |
24
|
expcom |
|- ( ( c ` z ) = 1o -> ( ( b ` z ) = 1o -> ( ( b ` z ) e. ( c ` z ) -> 1o e. 1o ) ) ) |
26 |
25
|
com3r |
|- ( ( b ` z ) e. ( c ` z ) -> ( ( c ` z ) = 1o -> ( ( b ` z ) = 1o -> 1o e. 1o ) ) ) |
27 |
26
|
imp |
|- ( ( ( b ` z ) e. ( c ` z ) /\ ( c ` z ) = 1o ) -> ( ( b ` z ) = 1o -> 1o e. 1o ) ) |
28 |
27
|
adantll |
|- ( ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ ( b ` z ) e. ( c ` z ) ) /\ ( c ` z ) = 1o ) -> ( ( b ` z ) = 1o -> 1o e. 1o ) ) |
29 |
22 28
|
mtoi |
|- ( ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ ( b ` z ) e. ( c ` z ) ) /\ ( c ` z ) = 1o ) -> -. ( b ` z ) = 1o ) |
30 |
20 29
|
mpdan |
|- ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ ( b ` z ) e. ( c ` z ) ) -> -. ( b ` z ) = 1o ) |
31 |
20 30
|
jca |
|- ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ ( b ` z ) e. ( c ` z ) ) -> ( ( c ` z ) = 1o /\ -. ( b ` z ) = 1o ) ) |
32 |
|
elpri |
|- ( ( b ` z ) e. { (/) , 1o } -> ( ( b ` z ) = (/) \/ ( b ` z ) = 1o ) ) |
33 |
32 16
|
eleq2s |
|- ( ( b ` z ) e. 2o -> ( ( b ` z ) = (/) \/ ( b ` z ) = 1o ) ) |
34 |
33
|
adantr |
|- ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) -> ( ( b ` z ) = (/) \/ ( b ` z ) = 1o ) ) |
35 |
|
orel2 |
|- ( -. ( b ` z ) = 1o -> ( ( ( b ` z ) = (/) \/ ( b ` z ) = 1o ) -> ( b ` z ) = (/) ) ) |
36 |
34 35
|
mpan9 |
|- ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ -. ( b ` z ) = 1o ) -> ( b ` z ) = (/) ) |
37 |
36
|
adantrl |
|- ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ ( ( c ` z ) = 1o /\ -. ( b ` z ) = 1o ) ) -> ( b ` z ) = (/) ) |
38 |
|
0lt1o |
|- (/) e. 1o |
39 |
37 38
|
eqeltrdi |
|- ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ ( ( c ` z ) = 1o /\ -. ( b ` z ) = 1o ) ) -> ( b ` z ) e. 1o ) |
40 |
|
simprl |
|- ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ ( ( c ` z ) = 1o /\ -. ( b ` z ) = 1o ) ) -> ( c ` z ) = 1o ) |
41 |
39 40
|
eleqtrrd |
|- ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ ( ( c ` z ) = 1o /\ -. ( b ` z ) = 1o ) ) -> ( b ` z ) e. ( c ` z ) ) |
42 |
31 41
|
impbida |
|- ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) -> ( ( b ` z ) e. ( c ` z ) <-> ( ( c ` z ) = 1o /\ -. ( b ` z ) = 1o ) ) ) |
43 |
9 12 42
|
syl2anc |
|- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> ( ( b ` z ) e. ( c ` z ) <-> ( ( c ` z ) = 1o /\ -. ( b ` z ) = 1o ) ) ) |
44 |
|
simplrr |
|- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> c e. ( 2o ^m A ) ) |
45 |
3
|
pw2f1o2val2 |
|- ( ( c e. ( 2o ^m A ) /\ z e. A ) -> ( z e. ( F ` c ) <-> ( c ` z ) = 1o ) ) |
46 |
44 45
|
sylancom |
|- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> ( z e. ( F ` c ) <-> ( c ` z ) = 1o ) ) |
47 |
|
simplrl |
|- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> b e. ( 2o ^m A ) ) |
48 |
3
|
pw2f1o2val2 |
|- ( ( b e. ( 2o ^m A ) /\ z e. A ) -> ( z e. ( F ` b ) <-> ( b ` z ) = 1o ) ) |
49 |
47 48
|
sylancom |
|- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> ( z e. ( F ` b ) <-> ( b ` z ) = 1o ) ) |
50 |
49
|
notbid |
|- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> ( -. z e. ( F ` b ) <-> -. ( b ` z ) = 1o ) ) |
51 |
46 50
|
anbi12d |
|- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> ( ( z e. ( F ` c ) /\ -. z e. ( F ` b ) ) <-> ( ( c ` z ) = 1o /\ -. ( b ` z ) = 1o ) ) ) |
52 |
43 51
|
bitr4d |
|- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> ( ( b ` z ) e. ( c ` z ) <-> ( z e. ( F ` c ) /\ -. z e. ( F ` b ) ) ) ) |
53 |
6 52
|
syl5bb |
|- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> ( ( b ` z ) _E ( c ` z ) <-> ( z e. ( F ` c ) /\ -. z e. ( F ` b ) ) ) ) |
54 |
8
|
ffvelrnda |
|- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ w e. A ) -> ( b ` w ) e. 2o ) |
55 |
11
|
ffvelrnda |
|- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ w e. A ) -> ( c ` w ) e. 2o ) |
56 |
|
eqeq1 |
|- ( ( b ` w ) = ( c ` w ) -> ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) |
57 |
|
simplr |
|- ( ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = (/) ) /\ ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) -> ( b ` w ) = (/) ) |
58 |
|
1n0 |
|- 1o =/= (/) |
59 |
58
|
nesymi |
|- -. (/) = 1o |
60 |
|
eqeq1 |
|- ( ( b ` w ) = (/) -> ( ( b ` w ) = 1o <-> (/) = 1o ) ) |
61 |
59 60
|
mtbiri |
|- ( ( b ` w ) = (/) -> -. ( b ` w ) = 1o ) |
62 |
61
|
ad2antlr |
|- ( ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = (/) ) /\ ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) -> -. ( b ` w ) = 1o ) |
63 |
|
simpr |
|- ( ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = (/) ) /\ ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) -> ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) |
64 |
62 63
|
mtbid |
|- ( ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = (/) ) /\ ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) -> -. ( c ` w ) = 1o ) |
65 |
|
elpri |
|- ( ( c ` w ) e. { (/) , 1o } -> ( ( c ` w ) = (/) \/ ( c ` w ) = 1o ) ) |
66 |
65 16
|
eleq2s |
|- ( ( c ` w ) e. 2o -> ( ( c ` w ) = (/) \/ ( c ` w ) = 1o ) ) |
67 |
66
|
ad3antlr |
|- ( ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = (/) ) /\ ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) -> ( ( c ` w ) = (/) \/ ( c ` w ) = 1o ) ) |
68 |
|
orel2 |
|- ( -. ( c ` w ) = 1o -> ( ( ( c ` w ) = (/) \/ ( c ` w ) = 1o ) -> ( c ` w ) = (/) ) ) |
69 |
64 67 68
|
sylc |
|- ( ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = (/) ) /\ ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) -> ( c ` w ) = (/) ) |
70 |
57 69
|
eqtr4d |
|- ( ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = (/) ) /\ ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) -> ( b ` w ) = ( c ` w ) ) |
71 |
70
|
ex |
|- ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = (/) ) -> ( ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) -> ( b ` w ) = ( c ` w ) ) ) |
72 |
|
simplr |
|- ( ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = 1o ) /\ ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) -> ( b ` w ) = 1o ) |
73 |
|
simpr |
|- ( ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = 1o ) /\ ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) -> ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) |
74 |
72 73
|
mpbid |
|- ( ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = 1o ) /\ ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) -> ( c ` w ) = 1o ) |
75 |
72 74
|
eqtr4d |
|- ( ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = 1o ) /\ ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) -> ( b ` w ) = ( c ` w ) ) |
76 |
75
|
ex |
|- ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = 1o ) -> ( ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) -> ( b ` w ) = ( c ` w ) ) ) |
77 |
|
elpri |
|- ( ( b ` w ) e. { (/) , 1o } -> ( ( b ` w ) = (/) \/ ( b ` w ) = 1o ) ) |
78 |
77 16
|
eleq2s |
|- ( ( b ` w ) e. 2o -> ( ( b ` w ) = (/) \/ ( b ` w ) = 1o ) ) |
79 |
78
|
adantr |
|- ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) -> ( ( b ` w ) = (/) \/ ( b ` w ) = 1o ) ) |
80 |
71 76 79
|
mpjaodan |
|- ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) -> ( ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) -> ( b ` w ) = ( c ` w ) ) ) |
81 |
56 80
|
impbid2 |
|- ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) -> ( ( b ` w ) = ( c ` w ) <-> ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) ) |
82 |
54 55 81
|
syl2anc |
|- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ w e. A ) -> ( ( b ` w ) = ( c ` w ) <-> ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) ) |
83 |
|
simplrl |
|- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ w e. A ) -> b e. ( 2o ^m A ) ) |
84 |
3
|
pw2f1o2val2 |
|- ( ( b e. ( 2o ^m A ) /\ w e. A ) -> ( w e. ( F ` b ) <-> ( b ` w ) = 1o ) ) |
85 |
83 84
|
sylancom |
|- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ w e. A ) -> ( w e. ( F ` b ) <-> ( b ` w ) = 1o ) ) |
86 |
|
simplrr |
|- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ w e. A ) -> c e. ( 2o ^m A ) ) |
87 |
3
|
pw2f1o2val2 |
|- ( ( c e. ( 2o ^m A ) /\ w e. A ) -> ( w e. ( F ` c ) <-> ( c ` w ) = 1o ) ) |
88 |
86 87
|
sylancom |
|- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ w e. A ) -> ( w e. ( F ` c ) <-> ( c ` w ) = 1o ) ) |
89 |
85 88
|
bibi12d |
|- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ w e. A ) -> ( ( w e. ( F ` b ) <-> w e. ( F ` c ) ) <-> ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) ) |
90 |
82 89
|
bitr4d |
|- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ w e. A ) -> ( ( b ` w ) = ( c ` w ) <-> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) |
91 |
90
|
imbi2d |
|- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ w e. A ) -> ( ( w R z -> ( b ` w ) = ( c ` w ) ) <-> ( w R z -> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) ) |
92 |
91
|
ralbidva |
|- ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) -> ( A. w e. A ( w R z -> ( b ` w ) = ( c ` w ) ) <-> A. w e. A ( w R z -> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) ) |
93 |
92
|
adantr |
|- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> ( A. w e. A ( w R z -> ( b ` w ) = ( c ` w ) ) <-> A. w e. A ( w R z -> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) ) |
94 |
53 93
|
anbi12d |
|- ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> ( ( ( b ` z ) _E ( c ` z ) /\ A. w e. A ( w R z -> ( b ` w ) = ( c ` w ) ) ) <-> ( ( z e. ( F ` c ) /\ -. z e. ( F ` b ) ) /\ A. w e. A ( w R z -> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) ) ) |
95 |
94
|
rexbidva |
|- ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) -> ( E. z e. A ( ( b ` z ) _E ( c ` z ) /\ A. w e. A ( w R z -> ( b ` w ) = ( c ` w ) ) ) <-> E. z e. A ( ( z e. ( F ` c ) /\ -. z e. ( F ` b ) ) /\ A. w e. A ( w R z -> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) ) ) |
96 |
|
vex |
|- b e. _V |
97 |
|
vex |
|- c e. _V |
98 |
|
fveq1 |
|- ( x = b -> ( x ` z ) = ( b ` z ) ) |
99 |
|
fveq1 |
|- ( y = c -> ( y ` z ) = ( c ` z ) ) |
100 |
98 99
|
breqan12d |
|- ( ( x = b /\ y = c ) -> ( ( x ` z ) _E ( y ` z ) <-> ( b ` z ) _E ( c ` z ) ) ) |
101 |
|
fveq1 |
|- ( x = b -> ( x ` w ) = ( b ` w ) ) |
102 |
|
fveq1 |
|- ( y = c -> ( y ` w ) = ( c ` w ) ) |
103 |
101 102
|
eqeqan12d |
|- ( ( x = b /\ y = c ) -> ( ( x ` w ) = ( y ` w ) <-> ( b ` w ) = ( c ` w ) ) ) |
104 |
103
|
imbi2d |
|- ( ( x = b /\ y = c ) -> ( ( w R z -> ( x ` w ) = ( y ` w ) ) <-> ( w R z -> ( b ` w ) = ( c ` w ) ) ) ) |
105 |
104
|
ralbidv |
|- ( ( x = b /\ y = c ) -> ( A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) <-> A. w e. A ( w R z -> ( b ` w ) = ( c ` w ) ) ) ) |
106 |
100 105
|
anbi12d |
|- ( ( x = b /\ y = c ) -> ( ( ( x ` z ) _E ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) <-> ( ( b ` z ) _E ( c ` z ) /\ A. w e. A ( w R z -> ( b ` w ) = ( c ` w ) ) ) ) ) |
107 |
106
|
rexbidv |
|- ( ( x = b /\ y = c ) -> ( E. z e. A ( ( x ` z ) _E ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) <-> E. z e. A ( ( b ` z ) _E ( c ` z ) /\ A. w e. A ( w R z -> ( b ` w ) = ( c ` w ) ) ) ) ) |
108 |
96 97 107 2
|
braba |
|- ( b U c <-> E. z e. A ( ( b ` z ) _E ( c ` z ) /\ A. w e. A ( w R z -> ( b ` w ) = ( c ` w ) ) ) ) |
109 |
|
fvex |
|- ( F ` b ) e. _V |
110 |
|
fvex |
|- ( F ` c ) e. _V |
111 |
|
eleq2 |
|- ( y = ( F ` c ) -> ( z e. y <-> z e. ( F ` c ) ) ) |
112 |
|
eleq2 |
|- ( x = ( F ` b ) -> ( z e. x <-> z e. ( F ` b ) ) ) |
113 |
112
|
notbid |
|- ( x = ( F ` b ) -> ( -. z e. x <-> -. z e. ( F ` b ) ) ) |
114 |
111 113
|
bi2anan9r |
|- ( ( x = ( F ` b ) /\ y = ( F ` c ) ) -> ( ( z e. y /\ -. z e. x ) <-> ( z e. ( F ` c ) /\ -. z e. ( F ` b ) ) ) ) |
115 |
|
eleq2 |
|- ( x = ( F ` b ) -> ( w e. x <-> w e. ( F ` b ) ) ) |
116 |
|
eleq2 |
|- ( y = ( F ` c ) -> ( w e. y <-> w e. ( F ` c ) ) ) |
117 |
115 116
|
bi2bian9 |
|- ( ( x = ( F ` b ) /\ y = ( F ` c ) ) -> ( ( w e. x <-> w e. y ) <-> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) |
118 |
117
|
imbi2d |
|- ( ( x = ( F ` b ) /\ y = ( F ` c ) ) -> ( ( w R z -> ( w e. x <-> w e. y ) ) <-> ( w R z -> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) ) |
119 |
118
|
ralbidv |
|- ( ( x = ( F ` b ) /\ y = ( F ` c ) ) -> ( A. w e. A ( w R z -> ( w e. x <-> w e. y ) ) <-> A. w e. A ( w R z -> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) ) |
120 |
114 119
|
anbi12d |
|- ( ( x = ( F ` b ) /\ y = ( F ` c ) ) -> ( ( ( z e. y /\ -. z e. x ) /\ A. w e. A ( w R z -> ( w e. x <-> w e. y ) ) ) <-> ( ( z e. ( F ` c ) /\ -. z e. ( F ` b ) ) /\ A. w e. A ( w R z -> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) ) ) |
121 |
120
|
rexbidv |
|- ( ( x = ( F ` b ) /\ y = ( F ` c ) ) -> ( E. z e. A ( ( z e. y /\ -. z e. x ) /\ A. w e. A ( w R z -> ( w e. x <-> w e. y ) ) ) <-> E. z e. A ( ( z e. ( F ` c ) /\ -. z e. ( F ` b ) ) /\ A. w e. A ( w R z -> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) ) ) |
122 |
109 110 121 1
|
braba |
|- ( ( F ` b ) T ( F ` c ) <-> E. z e. A ( ( z e. ( F ` c ) /\ -. z e. ( F ` b ) ) /\ A. w e. A ( w R z -> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) ) |
123 |
95 108 122
|
3bitr4g |
|- ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) -> ( b U c <-> ( F ` b ) T ( F ` c ) ) ) |
124 |
123
|
ralrimivva |
|- ( A e. _V -> A. b e. ( 2o ^m A ) A. c e. ( 2o ^m A ) ( b U c <-> ( F ` b ) T ( F ` c ) ) ) |
125 |
|
df-isom |
|- ( F Isom U , T ( ( 2o ^m A ) , ~P A ) <-> ( F : ( 2o ^m A ) -1-1-onto-> ~P A /\ A. b e. ( 2o ^m A ) A. c e. ( 2o ^m A ) ( b U c <-> ( F ` b ) T ( F ` c ) ) ) ) |
126 |
4 124 125
|
sylanbrc |
|- ( A e. _V -> F Isom U , T ( ( 2o ^m A ) , ~P A ) ) |