| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wepwso.t |  |-  T = { <. x , y >. | E. z e. A ( ( z e. y /\ -. z e. x ) /\ A. w e. A ( w R z -> ( w e. x <-> w e. y ) ) ) } | 
						
							| 2 |  | wepwso.u |  |-  U = { <. x , y >. | E. z e. A ( ( x ` z ) _E ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } | 
						
							| 3 |  | wepwso.f |  |-  F = ( a e. ( 2o ^m A ) |-> ( `' a " { 1o } ) ) | 
						
							| 4 | 3 | pw2f1o2 |  |-  ( A e. _V -> F : ( 2o ^m A ) -1-1-onto-> ~P A ) | 
						
							| 5 |  | fvex |  |-  ( c ` z ) e. _V | 
						
							| 6 | 5 | epeli |  |-  ( ( b ` z ) _E ( c ` z ) <-> ( b ` z ) e. ( c ` z ) ) | 
						
							| 7 |  | elmapi |  |-  ( b e. ( 2o ^m A ) -> b : A --> 2o ) | 
						
							| 8 | 7 | ad2antrl |  |-  ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) -> b : A --> 2o ) | 
						
							| 9 | 8 | ffvelcdmda |  |-  ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> ( b ` z ) e. 2o ) | 
						
							| 10 |  | elmapi |  |-  ( c e. ( 2o ^m A ) -> c : A --> 2o ) | 
						
							| 11 | 10 | ad2antll |  |-  ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) -> c : A --> 2o ) | 
						
							| 12 | 11 | ffvelcdmda |  |-  ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> ( c ` z ) e. 2o ) | 
						
							| 13 |  | n0i |  |-  ( ( b ` z ) e. ( c ` z ) -> -. ( c ` z ) = (/) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ ( b ` z ) e. ( c ` z ) ) -> -. ( c ` z ) = (/) ) | 
						
							| 15 |  | elpri |  |-  ( ( c ` z ) e. { (/) , 1o } -> ( ( c ` z ) = (/) \/ ( c ` z ) = 1o ) ) | 
						
							| 16 |  | df2o3 |  |-  2o = { (/) , 1o } | 
						
							| 17 | 15 16 | eleq2s |  |-  ( ( c ` z ) e. 2o -> ( ( c ` z ) = (/) \/ ( c ` z ) = 1o ) ) | 
						
							| 18 | 17 | ad2antlr |  |-  ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ ( b ` z ) e. ( c ` z ) ) -> ( ( c ` z ) = (/) \/ ( c ` z ) = 1o ) ) | 
						
							| 19 |  | orel1 |  |-  ( -. ( c ` z ) = (/) -> ( ( ( c ` z ) = (/) \/ ( c ` z ) = 1o ) -> ( c ` z ) = 1o ) ) | 
						
							| 20 | 14 18 19 | sylc |  |-  ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ ( b ` z ) e. ( c ` z ) ) -> ( c ` z ) = 1o ) | 
						
							| 21 |  | 1on |  |-  1o e. On | 
						
							| 22 | 21 | onirri |  |-  -. 1o e. 1o | 
						
							| 23 |  | eleq12 |  |-  ( ( ( b ` z ) = 1o /\ ( c ` z ) = 1o ) -> ( ( b ` z ) e. ( c ` z ) <-> 1o e. 1o ) ) | 
						
							| 24 | 23 | biimpd |  |-  ( ( ( b ` z ) = 1o /\ ( c ` z ) = 1o ) -> ( ( b ` z ) e. ( c ` z ) -> 1o e. 1o ) ) | 
						
							| 25 | 24 | expcom |  |-  ( ( c ` z ) = 1o -> ( ( b ` z ) = 1o -> ( ( b ` z ) e. ( c ` z ) -> 1o e. 1o ) ) ) | 
						
							| 26 | 25 | com3r |  |-  ( ( b ` z ) e. ( c ` z ) -> ( ( c ` z ) = 1o -> ( ( b ` z ) = 1o -> 1o e. 1o ) ) ) | 
						
							| 27 | 26 | imp |  |-  ( ( ( b ` z ) e. ( c ` z ) /\ ( c ` z ) = 1o ) -> ( ( b ` z ) = 1o -> 1o e. 1o ) ) | 
						
							| 28 | 27 | adantll |  |-  ( ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ ( b ` z ) e. ( c ` z ) ) /\ ( c ` z ) = 1o ) -> ( ( b ` z ) = 1o -> 1o e. 1o ) ) | 
						
							| 29 | 22 28 | mtoi |  |-  ( ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ ( b ` z ) e. ( c ` z ) ) /\ ( c ` z ) = 1o ) -> -. ( b ` z ) = 1o ) | 
						
							| 30 | 20 29 | mpdan |  |-  ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ ( b ` z ) e. ( c ` z ) ) -> -. ( b ` z ) = 1o ) | 
						
							| 31 | 20 30 | jca |  |-  ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ ( b ` z ) e. ( c ` z ) ) -> ( ( c ` z ) = 1o /\ -. ( b ` z ) = 1o ) ) | 
						
							| 32 |  | elpri |  |-  ( ( b ` z ) e. { (/) , 1o } -> ( ( b ` z ) = (/) \/ ( b ` z ) = 1o ) ) | 
						
							| 33 | 32 16 | eleq2s |  |-  ( ( b ` z ) e. 2o -> ( ( b ` z ) = (/) \/ ( b ` z ) = 1o ) ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) -> ( ( b ` z ) = (/) \/ ( b ` z ) = 1o ) ) | 
						
							| 35 |  | orel2 |  |-  ( -. ( b ` z ) = 1o -> ( ( ( b ` z ) = (/) \/ ( b ` z ) = 1o ) -> ( b ` z ) = (/) ) ) | 
						
							| 36 | 34 35 | mpan9 |  |-  ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ -. ( b ` z ) = 1o ) -> ( b ` z ) = (/) ) | 
						
							| 37 | 36 | adantrl |  |-  ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ ( ( c ` z ) = 1o /\ -. ( b ` z ) = 1o ) ) -> ( b ` z ) = (/) ) | 
						
							| 38 |  | 0lt1o |  |-  (/) e. 1o | 
						
							| 39 | 37 38 | eqeltrdi |  |-  ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ ( ( c ` z ) = 1o /\ -. ( b ` z ) = 1o ) ) -> ( b ` z ) e. 1o ) | 
						
							| 40 |  | simprl |  |-  ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ ( ( c ` z ) = 1o /\ -. ( b ` z ) = 1o ) ) -> ( c ` z ) = 1o ) | 
						
							| 41 | 39 40 | eleqtrrd |  |-  ( ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) /\ ( ( c ` z ) = 1o /\ -. ( b ` z ) = 1o ) ) -> ( b ` z ) e. ( c ` z ) ) | 
						
							| 42 | 31 41 | impbida |  |-  ( ( ( b ` z ) e. 2o /\ ( c ` z ) e. 2o ) -> ( ( b ` z ) e. ( c ` z ) <-> ( ( c ` z ) = 1o /\ -. ( b ` z ) = 1o ) ) ) | 
						
							| 43 | 9 12 42 | syl2anc |  |-  ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> ( ( b ` z ) e. ( c ` z ) <-> ( ( c ` z ) = 1o /\ -. ( b ` z ) = 1o ) ) ) | 
						
							| 44 |  | simplrr |  |-  ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> c e. ( 2o ^m A ) ) | 
						
							| 45 | 3 | pw2f1o2val2 |  |-  ( ( c e. ( 2o ^m A ) /\ z e. A ) -> ( z e. ( F ` c ) <-> ( c ` z ) = 1o ) ) | 
						
							| 46 | 44 45 | sylancom |  |-  ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> ( z e. ( F ` c ) <-> ( c ` z ) = 1o ) ) | 
						
							| 47 |  | simplrl |  |-  ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> b e. ( 2o ^m A ) ) | 
						
							| 48 | 3 | pw2f1o2val2 |  |-  ( ( b e. ( 2o ^m A ) /\ z e. A ) -> ( z e. ( F ` b ) <-> ( b ` z ) = 1o ) ) | 
						
							| 49 | 47 48 | sylancom |  |-  ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> ( z e. ( F ` b ) <-> ( b ` z ) = 1o ) ) | 
						
							| 50 | 49 | notbid |  |-  ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> ( -. z e. ( F ` b ) <-> -. ( b ` z ) = 1o ) ) | 
						
							| 51 | 46 50 | anbi12d |  |-  ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> ( ( z e. ( F ` c ) /\ -. z e. ( F ` b ) ) <-> ( ( c ` z ) = 1o /\ -. ( b ` z ) = 1o ) ) ) | 
						
							| 52 | 43 51 | bitr4d |  |-  ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> ( ( b ` z ) e. ( c ` z ) <-> ( z e. ( F ` c ) /\ -. z e. ( F ` b ) ) ) ) | 
						
							| 53 | 6 52 | bitrid |  |-  ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> ( ( b ` z ) _E ( c ` z ) <-> ( z e. ( F ` c ) /\ -. z e. ( F ` b ) ) ) ) | 
						
							| 54 | 8 | ffvelcdmda |  |-  ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ w e. A ) -> ( b ` w ) e. 2o ) | 
						
							| 55 | 11 | ffvelcdmda |  |-  ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ w e. A ) -> ( c ` w ) e. 2o ) | 
						
							| 56 |  | eqeq1 |  |-  ( ( b ` w ) = ( c ` w ) -> ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) | 
						
							| 57 |  | simplr |  |-  ( ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = (/) ) /\ ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) -> ( b ` w ) = (/) ) | 
						
							| 58 |  | 1n0 |  |-  1o =/= (/) | 
						
							| 59 | 58 | nesymi |  |-  -. (/) = 1o | 
						
							| 60 |  | eqeq1 |  |-  ( ( b ` w ) = (/) -> ( ( b ` w ) = 1o <-> (/) = 1o ) ) | 
						
							| 61 | 59 60 | mtbiri |  |-  ( ( b ` w ) = (/) -> -. ( b ` w ) = 1o ) | 
						
							| 62 | 61 | ad2antlr |  |-  ( ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = (/) ) /\ ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) -> -. ( b ` w ) = 1o ) | 
						
							| 63 |  | simpr |  |-  ( ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = (/) ) /\ ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) -> ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) | 
						
							| 64 | 62 63 | mtbid |  |-  ( ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = (/) ) /\ ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) -> -. ( c ` w ) = 1o ) | 
						
							| 65 |  | elpri |  |-  ( ( c ` w ) e. { (/) , 1o } -> ( ( c ` w ) = (/) \/ ( c ` w ) = 1o ) ) | 
						
							| 66 | 65 16 | eleq2s |  |-  ( ( c ` w ) e. 2o -> ( ( c ` w ) = (/) \/ ( c ` w ) = 1o ) ) | 
						
							| 67 | 66 | ad3antlr |  |-  ( ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = (/) ) /\ ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) -> ( ( c ` w ) = (/) \/ ( c ` w ) = 1o ) ) | 
						
							| 68 |  | orel2 |  |-  ( -. ( c ` w ) = 1o -> ( ( ( c ` w ) = (/) \/ ( c ` w ) = 1o ) -> ( c ` w ) = (/) ) ) | 
						
							| 69 | 64 67 68 | sylc |  |-  ( ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = (/) ) /\ ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) -> ( c ` w ) = (/) ) | 
						
							| 70 | 57 69 | eqtr4d |  |-  ( ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = (/) ) /\ ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) -> ( b ` w ) = ( c ` w ) ) | 
						
							| 71 | 70 | ex |  |-  ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = (/) ) -> ( ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) -> ( b ` w ) = ( c ` w ) ) ) | 
						
							| 72 |  | simplr |  |-  ( ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = 1o ) /\ ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) -> ( b ` w ) = 1o ) | 
						
							| 73 |  | simpr |  |-  ( ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = 1o ) /\ ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) -> ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) | 
						
							| 74 | 72 73 | mpbid |  |-  ( ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = 1o ) /\ ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) -> ( c ` w ) = 1o ) | 
						
							| 75 | 72 74 | eqtr4d |  |-  ( ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = 1o ) /\ ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) -> ( b ` w ) = ( c ` w ) ) | 
						
							| 76 | 75 | ex |  |-  ( ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) /\ ( b ` w ) = 1o ) -> ( ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) -> ( b ` w ) = ( c ` w ) ) ) | 
						
							| 77 |  | elpri |  |-  ( ( b ` w ) e. { (/) , 1o } -> ( ( b ` w ) = (/) \/ ( b ` w ) = 1o ) ) | 
						
							| 78 | 77 16 | eleq2s |  |-  ( ( b ` w ) e. 2o -> ( ( b ` w ) = (/) \/ ( b ` w ) = 1o ) ) | 
						
							| 79 | 78 | adantr |  |-  ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) -> ( ( b ` w ) = (/) \/ ( b ` w ) = 1o ) ) | 
						
							| 80 | 71 76 79 | mpjaodan |  |-  ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) -> ( ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) -> ( b ` w ) = ( c ` w ) ) ) | 
						
							| 81 | 56 80 | impbid2 |  |-  ( ( ( b ` w ) e. 2o /\ ( c ` w ) e. 2o ) -> ( ( b ` w ) = ( c ` w ) <-> ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) ) | 
						
							| 82 | 54 55 81 | syl2anc |  |-  ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ w e. A ) -> ( ( b ` w ) = ( c ` w ) <-> ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) ) | 
						
							| 83 |  | simplrl |  |-  ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ w e. A ) -> b e. ( 2o ^m A ) ) | 
						
							| 84 | 3 | pw2f1o2val2 |  |-  ( ( b e. ( 2o ^m A ) /\ w e. A ) -> ( w e. ( F ` b ) <-> ( b ` w ) = 1o ) ) | 
						
							| 85 | 83 84 | sylancom |  |-  ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ w e. A ) -> ( w e. ( F ` b ) <-> ( b ` w ) = 1o ) ) | 
						
							| 86 |  | simplrr |  |-  ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ w e. A ) -> c e. ( 2o ^m A ) ) | 
						
							| 87 | 3 | pw2f1o2val2 |  |-  ( ( c e. ( 2o ^m A ) /\ w e. A ) -> ( w e. ( F ` c ) <-> ( c ` w ) = 1o ) ) | 
						
							| 88 | 86 87 | sylancom |  |-  ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ w e. A ) -> ( w e. ( F ` c ) <-> ( c ` w ) = 1o ) ) | 
						
							| 89 | 85 88 | bibi12d |  |-  ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ w e. A ) -> ( ( w e. ( F ` b ) <-> w e. ( F ` c ) ) <-> ( ( b ` w ) = 1o <-> ( c ` w ) = 1o ) ) ) | 
						
							| 90 | 82 89 | bitr4d |  |-  ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ w e. A ) -> ( ( b ` w ) = ( c ` w ) <-> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) | 
						
							| 91 | 90 | imbi2d |  |-  ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ w e. A ) -> ( ( w R z -> ( b ` w ) = ( c ` w ) ) <-> ( w R z -> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) ) | 
						
							| 92 | 91 | ralbidva |  |-  ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) -> ( A. w e. A ( w R z -> ( b ` w ) = ( c ` w ) ) <-> A. w e. A ( w R z -> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) ) | 
						
							| 93 | 92 | adantr |  |-  ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> ( A. w e. A ( w R z -> ( b ` w ) = ( c ` w ) ) <-> A. w e. A ( w R z -> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) ) | 
						
							| 94 | 53 93 | anbi12d |  |-  ( ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) /\ z e. A ) -> ( ( ( b ` z ) _E ( c ` z ) /\ A. w e. A ( w R z -> ( b ` w ) = ( c ` w ) ) ) <-> ( ( z e. ( F ` c ) /\ -. z e. ( F ` b ) ) /\ A. w e. A ( w R z -> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) ) ) | 
						
							| 95 | 94 | rexbidva |  |-  ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) -> ( E. z e. A ( ( b ` z ) _E ( c ` z ) /\ A. w e. A ( w R z -> ( b ` w ) = ( c ` w ) ) ) <-> E. z e. A ( ( z e. ( F ` c ) /\ -. z e. ( F ` b ) ) /\ A. w e. A ( w R z -> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) ) ) | 
						
							| 96 |  | vex |  |-  b e. _V | 
						
							| 97 |  | vex |  |-  c e. _V | 
						
							| 98 |  | fveq1 |  |-  ( x = b -> ( x ` z ) = ( b ` z ) ) | 
						
							| 99 |  | fveq1 |  |-  ( y = c -> ( y ` z ) = ( c ` z ) ) | 
						
							| 100 | 98 99 | breqan12d |  |-  ( ( x = b /\ y = c ) -> ( ( x ` z ) _E ( y ` z ) <-> ( b ` z ) _E ( c ` z ) ) ) | 
						
							| 101 |  | fveq1 |  |-  ( x = b -> ( x ` w ) = ( b ` w ) ) | 
						
							| 102 |  | fveq1 |  |-  ( y = c -> ( y ` w ) = ( c ` w ) ) | 
						
							| 103 | 101 102 | eqeqan12d |  |-  ( ( x = b /\ y = c ) -> ( ( x ` w ) = ( y ` w ) <-> ( b ` w ) = ( c ` w ) ) ) | 
						
							| 104 | 103 | imbi2d |  |-  ( ( x = b /\ y = c ) -> ( ( w R z -> ( x ` w ) = ( y ` w ) ) <-> ( w R z -> ( b ` w ) = ( c ` w ) ) ) ) | 
						
							| 105 | 104 | ralbidv |  |-  ( ( x = b /\ y = c ) -> ( A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) <-> A. w e. A ( w R z -> ( b ` w ) = ( c ` w ) ) ) ) | 
						
							| 106 | 100 105 | anbi12d |  |-  ( ( x = b /\ y = c ) -> ( ( ( x ` z ) _E ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) <-> ( ( b ` z ) _E ( c ` z ) /\ A. w e. A ( w R z -> ( b ` w ) = ( c ` w ) ) ) ) ) | 
						
							| 107 | 106 | rexbidv |  |-  ( ( x = b /\ y = c ) -> ( E. z e. A ( ( x ` z ) _E ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) <-> E. z e. A ( ( b ` z ) _E ( c ` z ) /\ A. w e. A ( w R z -> ( b ` w ) = ( c ` w ) ) ) ) ) | 
						
							| 108 | 96 97 107 2 | braba |  |-  ( b U c <-> E. z e. A ( ( b ` z ) _E ( c ` z ) /\ A. w e. A ( w R z -> ( b ` w ) = ( c ` w ) ) ) ) | 
						
							| 109 |  | fvex |  |-  ( F ` b ) e. _V | 
						
							| 110 |  | fvex |  |-  ( F ` c ) e. _V | 
						
							| 111 |  | eleq2 |  |-  ( y = ( F ` c ) -> ( z e. y <-> z e. ( F ` c ) ) ) | 
						
							| 112 |  | eleq2 |  |-  ( x = ( F ` b ) -> ( z e. x <-> z e. ( F ` b ) ) ) | 
						
							| 113 | 112 | notbid |  |-  ( x = ( F ` b ) -> ( -. z e. x <-> -. z e. ( F ` b ) ) ) | 
						
							| 114 | 111 113 | bi2anan9r |  |-  ( ( x = ( F ` b ) /\ y = ( F ` c ) ) -> ( ( z e. y /\ -. z e. x ) <-> ( z e. ( F ` c ) /\ -. z e. ( F ` b ) ) ) ) | 
						
							| 115 |  | eleq2 |  |-  ( x = ( F ` b ) -> ( w e. x <-> w e. ( F ` b ) ) ) | 
						
							| 116 |  | eleq2 |  |-  ( y = ( F ` c ) -> ( w e. y <-> w e. ( F ` c ) ) ) | 
						
							| 117 | 115 116 | bi2bian9 |  |-  ( ( x = ( F ` b ) /\ y = ( F ` c ) ) -> ( ( w e. x <-> w e. y ) <-> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) | 
						
							| 118 | 117 | imbi2d |  |-  ( ( x = ( F ` b ) /\ y = ( F ` c ) ) -> ( ( w R z -> ( w e. x <-> w e. y ) ) <-> ( w R z -> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) ) | 
						
							| 119 | 118 | ralbidv |  |-  ( ( x = ( F ` b ) /\ y = ( F ` c ) ) -> ( A. w e. A ( w R z -> ( w e. x <-> w e. y ) ) <-> A. w e. A ( w R z -> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) ) | 
						
							| 120 | 114 119 | anbi12d |  |-  ( ( x = ( F ` b ) /\ y = ( F ` c ) ) -> ( ( ( z e. y /\ -. z e. x ) /\ A. w e. A ( w R z -> ( w e. x <-> w e. y ) ) ) <-> ( ( z e. ( F ` c ) /\ -. z e. ( F ` b ) ) /\ A. w e. A ( w R z -> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) ) ) | 
						
							| 121 | 120 | rexbidv |  |-  ( ( x = ( F ` b ) /\ y = ( F ` c ) ) -> ( E. z e. A ( ( z e. y /\ -. z e. x ) /\ A. w e. A ( w R z -> ( w e. x <-> w e. y ) ) ) <-> E. z e. A ( ( z e. ( F ` c ) /\ -. z e. ( F ` b ) ) /\ A. w e. A ( w R z -> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) ) ) | 
						
							| 122 | 109 110 121 1 | braba |  |-  ( ( F ` b ) T ( F ` c ) <-> E. z e. A ( ( z e. ( F ` c ) /\ -. z e. ( F ` b ) ) /\ A. w e. A ( w R z -> ( w e. ( F ` b ) <-> w e. ( F ` c ) ) ) ) ) | 
						
							| 123 | 95 108 122 | 3bitr4g |  |-  ( ( A e. _V /\ ( b e. ( 2o ^m A ) /\ c e. ( 2o ^m A ) ) ) -> ( b U c <-> ( F ` b ) T ( F ` c ) ) ) | 
						
							| 124 | 123 | ralrimivva |  |-  ( A e. _V -> A. b e. ( 2o ^m A ) A. c e. ( 2o ^m A ) ( b U c <-> ( F ` b ) T ( F ` c ) ) ) | 
						
							| 125 |  | df-isom |  |-  ( F Isom U , T ( ( 2o ^m A ) , ~P A ) <-> ( F : ( 2o ^m A ) -1-1-onto-> ~P A /\ A. b e. ( 2o ^m A ) A. c e. ( 2o ^m A ) ( b U c <-> ( F ` b ) T ( F ` c ) ) ) ) | 
						
							| 126 | 4 124 125 | sylanbrc |  |-  ( A e. _V -> F Isom U , T ( ( 2o ^m A ) , ~P A ) ) |