Description: Subset theorem for the well-ordering predicate. Exercise 4 of TakeutiZaring p. 31. (Contributed by NM, 19-Apr-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wess | |- ( A C_ B -> ( R We B -> R We A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frss | |- ( A C_ B -> ( R Fr B -> R Fr A ) ) |
|
| 2 | soss | |- ( A C_ B -> ( R Or B -> R Or A ) ) |
|
| 3 | 1 2 | anim12d | |- ( A C_ B -> ( ( R Fr B /\ R Or B ) -> ( R Fr A /\ R Or A ) ) ) |
| 4 | df-we | |- ( R We B <-> ( R Fr B /\ R Or B ) ) |
|
| 5 | df-we | |- ( R We A <-> ( R Fr A /\ R Or A ) ) |
|
| 6 | 3 4 5 | 3imtr4g | |- ( A C_ B -> ( R We B -> R We A ) ) |