Description: Given a function F on a well-ordered domain A there exists a subset of A such that F restricted to such subset is injective and onto the range of F (without using the axiom of choice). (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | wessf1orn.f | |- ( ph -> F Fn A ) |
|
wessf1orn.a | |- ( ph -> A e. V ) |
||
wessf1orn.r | |- ( ph -> R We A ) |
||
Assertion | wessf1orn | |- ( ph -> E. x e. ~P A ( F |` x ) : x -1-1-onto-> ran F ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wessf1orn.f | |- ( ph -> F Fn A ) |
|
2 | wessf1orn.a | |- ( ph -> A e. V ) |
|
3 | wessf1orn.r | |- ( ph -> R We A ) |
|
4 | eqid | |- ( y e. ran F |-> ( iota_ x e. ( `' F " { y } ) A. z e. ( `' F " { y } ) -. z R x ) ) = ( y e. ran F |-> ( iota_ x e. ( `' F " { y } ) A. z e. ( `' F " { y } ) -. z R x ) ) |
|
5 | 1 2 3 4 | wessf1ornlem | |- ( ph -> E. x e. ~P A ( F |` x ) : x -1-1-onto-> ran F ) |