Metamath Proof Explorer


Theorem wessf1orn

Description: Given a function F on a well-ordered domain A there exists a subset of A such that F restricted to such subset is injective and onto the range of F (without using the axiom of choice). (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses wessf1orn.f
|- ( ph -> F Fn A )
wessf1orn.a
|- ( ph -> A e. V )
wessf1orn.r
|- ( ph -> R We A )
Assertion wessf1orn
|- ( ph -> E. x e. ~P A ( F |` x ) : x -1-1-onto-> ran F )

Proof

Step Hyp Ref Expression
1 wessf1orn.f
 |-  ( ph -> F Fn A )
2 wessf1orn.a
 |-  ( ph -> A e. V )
3 wessf1orn.r
 |-  ( ph -> R We A )
4 eqid
 |-  ( y e. ran F |-> ( iota_ x e. ( `' F " { y } ) A. z e. ( `' F " { y } ) -. z R x ) ) = ( y e. ran F |-> ( iota_ x e. ( `' F " { y } ) A. z e. ( `' F " { y } ) -. z R x ) )
5 1 2 3 4 wessf1ornlem
 |-  ( ph -> E. x e. ~P A ( F |` x ) : x -1-1-onto-> ran F )