| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wefr |  |-  ( R We A -> R Fr A ) | 
						
							| 2 | 1 | adantr |  |-  ( ( R We A /\ R Se A ) -> R Fr A ) | 
						
							| 3 |  | weso |  |-  ( R We A -> R Or A ) | 
						
							| 4 |  | sopo |  |-  ( R Or A -> R Po A ) | 
						
							| 5 | 3 4 | syl |  |-  ( R We A -> R Po A ) | 
						
							| 6 | 5 | adantr |  |-  ( ( R We A /\ R Se A ) -> R Po A ) | 
						
							| 7 |  | simpr |  |-  ( ( R We A /\ R Se A ) -> R Se A ) | 
						
							| 8 | 2 6 7 | 3jca |  |-  ( ( R We A /\ R Se A ) -> ( R Fr A /\ R Po A /\ R Se A ) ) | 
						
							| 9 |  | frpoind |  |-  ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ ( B C_ A /\ A. y e. A ( Pred ( R , A , y ) C_ B -> y e. B ) ) ) -> A = B ) | 
						
							| 10 | 8 9 | sylan |  |-  ( ( ( R We A /\ R Se A ) /\ ( B C_ A /\ A. y e. A ( Pred ( R , A , y ) C_ B -> y e. B ) ) ) -> A = B ) |