Description: The Principle of Well-Ordered Induction. Theorem 6.27 of TakeutiZaring p. 32. This principle states that if B is a subclass of a well-ordered class A with the property that every element of B whose inital segment is included in A is itself equal to A . (Contributed by Scott Fenton, 29-Jan-2011) (Revised by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wfi.1 | |- R We A | |
| wfi.2 | |- R Se A | ||
| Assertion | wfii | |- ( ( B C_ A /\ A. y e. A ( Pred ( R , A , y ) C_ B -> y e. B ) ) -> A = B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | wfi.1 | |- R We A | |
| 2 | wfi.2 | |- R Se A | |
| 3 | wfi | |- ( ( ( R We A /\ R Se A ) /\ ( B C_ A /\ A. y e. A ( Pred ( R , A , y ) C_ B -> y e. B ) ) ) -> A = B ) | |
| 4 | 1 2 3 | mpanl12 | |- ( ( B C_ A /\ A. y e. A ( Pred ( R , A , y ) C_ B -> y e. B ) ) -> A = B ) |