Description: The Principle of Well-Ordered Induction. Theorem 6.27 of TakeutiZaring p. 32. This principle states that if B is a subclass of a well-ordered class A with the property that every element of B whose inital segment is included in A is itself equal to A . (Contributed by Scott Fenton, 29-Jan-2011) (Revised by Mario Carneiro, 26-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | wfi.1 | |- R We A |
|
wfi.2 | |- R Se A |
||
Assertion | wfii | |- ( ( B C_ A /\ A. y e. A ( Pred ( R , A , y ) C_ B -> y e. B ) ) -> A = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfi.1 | |- R We A |
|
2 | wfi.2 | |- R Se A |
|
3 | wfi | |- ( ( ( R We A /\ R Se A ) /\ ( B C_ A /\ A. y e. A ( Pred ( R , A , y ) C_ B -> y e. B ) ) ) -> A = B ) |
|
4 | 1 2 3 | mpanl12 | |- ( ( B C_ A /\ A. y e. A ( Pred ( R , A , y ) C_ B -> y e. B ) ) -> A = B ) |