Metamath Proof Explorer


Theorem wfis

Description: Well-Ordered Induction Schema. If all elements less than a given set x of the well-ordered class A have a property (induction hypothesis), then all elements of A have that property. (Contributed by Scott Fenton, 29-Jan-2011)

Ref Expression
Hypotheses wfis.1
|- R We A
wfis.2
|- R Se A
wfis.3
|- ( y e. A -> ( A. z e. Pred ( R , A , y ) [. z / y ]. ph -> ph ) )
Assertion wfis
|- ( y e. A -> ph )

Proof

Step Hyp Ref Expression
1 wfis.1
 |-  R We A
2 wfis.2
 |-  R Se A
3 wfis.3
 |-  ( y e. A -> ( A. z e. Pred ( R , A , y ) [. z / y ]. ph -> ph ) )
4 3 wfisg
 |-  ( ( R We A /\ R Se A ) -> A. y e. A ph )
5 1 2 4 mp2an
 |-  A. y e. A ph
6 5 rspec
 |-  ( y e. A -> ph )