Description: Well-Ordered Induction Schema. If all elements less than a given set x of the well-ordered class A have a property (induction hypothesis), then all elements of A have that property. (Contributed by Scott Fenton, 29-Jan-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wfis.1 | |- R We A |
|
| wfis.2 | |- R Se A |
||
| wfis.3 | |- ( y e. A -> ( A. z e. Pred ( R , A , y ) [. z / y ]. ph -> ph ) ) |
||
| Assertion | wfis | |- ( y e. A -> ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wfis.1 | |- R We A |
|
| 2 | wfis.2 | |- R Se A |
|
| 3 | wfis.3 | |- ( y e. A -> ( A. z e. Pred ( R , A , y ) [. z / y ]. ph -> ph ) ) |
|
| 4 | 3 | wfisg | |- ( ( R We A /\ R Se A ) -> A. y e. A ph ) |
| 5 | 1 2 4 | mp2an | |- A. y e. A ph |
| 6 | 5 | rspec | |- ( y e. A -> ph ) |