Metamath Proof Explorer


Theorem wfis2fg

Description: Well-Founded Induction Schema, using implicit substitution. (Contributed by Scott Fenton, 11-Feb-2011)

Ref Expression
Hypotheses wfis2fg.1
|- F/ y ps
wfis2fg.2
|- ( y = z -> ( ph <-> ps ) )
wfis2fg.3
|- ( y e. A -> ( A. z e. Pred ( R , A , y ) ps -> ph ) )
Assertion wfis2fg
|- ( ( R We A /\ R Se A ) -> A. y e. A ph )

Proof

Step Hyp Ref Expression
1 wfis2fg.1
 |-  F/ y ps
2 wfis2fg.2
 |-  ( y = z -> ( ph <-> ps ) )
3 wfis2fg.3
 |-  ( y e. A -> ( A. z e. Pred ( R , A , y ) ps -> ph ) )
4 sbsbc
 |-  ( [ z / y ] ph <-> [. z / y ]. ph )
5 1 2 sbiev
 |-  ( [ z / y ] ph <-> ps )
6 4 5 bitr3i
 |-  ( [. z / y ]. ph <-> ps )
7 6 ralbii
 |-  ( A. z e. Pred ( R , A , y ) [. z / y ]. ph <-> A. z e. Pred ( R , A , y ) ps )
8 7 3 syl5bi
 |-  ( y e. A -> ( A. z e. Pred ( R , A , y ) [. z / y ]. ph -> ph ) )
9 8 wfisg
 |-  ( ( R We A /\ R Se A ) -> A. y e. A ph )