Description: Well-Ordered Induction schema, using implicit substitution. (Contributed by Scott Fenton, 29-Jan-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wfis3.1 | |- R We A |
|
| wfis3.2 | |- R Se A |
||
| wfis3.3 | |- ( y = z -> ( ph <-> ps ) ) |
||
| wfis3.4 | |- ( y = B -> ( ph <-> ch ) ) |
||
| wfis3.5 | |- ( y e. A -> ( A. z e. Pred ( R , A , y ) ps -> ph ) ) |
||
| Assertion | wfis3 | |- ( B e. A -> ch ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wfis3.1 | |- R We A |
|
| 2 | wfis3.2 | |- R Se A |
|
| 3 | wfis3.3 | |- ( y = z -> ( ph <-> ps ) ) |
|
| 4 | wfis3.4 | |- ( y = B -> ( ph <-> ch ) ) |
|
| 5 | wfis3.5 | |- ( y e. A -> ( A. z e. Pred ( R , A , y ) ps -> ph ) ) |
|
| 6 | 1 2 3 5 | wfis2 | |- ( y e. A -> ph ) |
| 7 | 4 6 | vtoclga | |- ( B e. A -> ch ) |