| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wfisg.1 |  |-  ( y e. A -> ( A. z e. Pred ( R , A , y ) [. z / y ]. ph -> ph ) ) | 
						
							| 2 |  | wefr |  |-  ( R We A -> R Fr A ) | 
						
							| 3 | 2 | adantr |  |-  ( ( R We A /\ R Se A ) -> R Fr A ) | 
						
							| 4 |  | weso |  |-  ( R We A -> R Or A ) | 
						
							| 5 |  | sopo |  |-  ( R Or A -> R Po A ) | 
						
							| 6 | 4 5 | syl |  |-  ( R We A -> R Po A ) | 
						
							| 7 | 6 | adantr |  |-  ( ( R We A /\ R Se A ) -> R Po A ) | 
						
							| 8 |  | simpr |  |-  ( ( R We A /\ R Se A ) -> R Se A ) | 
						
							| 9 | 1 | adantl |  |-  ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ y e. A ) -> ( A. z e. Pred ( R , A , y ) [. z / y ]. ph -> ph ) ) | 
						
							| 10 | 9 | frpoinsg |  |-  ( ( R Fr A /\ R Po A /\ R Se A ) -> A. y e. A ph ) | 
						
							| 11 | 3 7 8 10 | syl3anc |  |-  ( ( R We A /\ R Se A ) -> A. y e. A ph ) |