Description: The Principle of Well-Ordered Recursion, part 2 of 3. Next, we show that the value of F at any X e. A is G recursively applied to all "previous" values of F . (Contributed by Scott Fenton, 18-Apr-2011) (Revised by Mario Carneiro, 26-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | wfr2.1 | |- R We A |
|
wfr2.2 | |- R Se A |
||
wfr2.3 | |- F = wrecs ( R , A , G ) |
||
Assertion | wfr2 | |- ( X e. A -> ( F ` X ) = ( G ` ( F |` Pred ( R , A , X ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfr2.1 | |- R We A |
|
2 | wfr2.2 | |- R Se A |
|
3 | wfr2.3 | |- F = wrecs ( R , A , G ) |
|
4 | eqid | |- ( F u. { <. x , ( G ` ( F |` Pred ( R , A , x ) ) ) >. } ) = ( F u. { <. x , ( G ` ( F |` Pred ( R , A , x ) ) ) >. } ) |
|
5 | 1 2 3 4 | wfrlem16 | |- dom F = A |
6 | 5 | eleq2i | |- ( X e. dom F <-> X e. A ) |
7 | 1 2 3 | wfr2a | |- ( X e. dom F -> ( F ` X ) = ( G ` ( F |` Pred ( R , A , X ) ) ) ) |
8 | 6 7 | sylbir | |- ( X e. A -> ( F ` X ) = ( G ` ( F |` Pred ( R , A , X ) ) ) ) |