Step |
Hyp |
Ref |
Expression |
1 |
|
wfr2a.1 |
|- R We A |
2 |
|
wfr2a.2 |
|- R Se A |
3 |
|
wfr2a.3 |
|- F = wrecs ( R , A , G ) |
4 |
|
fveq2 |
|- ( x = X -> ( F ` x ) = ( F ` X ) ) |
5 |
|
predeq3 |
|- ( x = X -> Pred ( R , A , x ) = Pred ( R , A , X ) ) |
6 |
5
|
reseq2d |
|- ( x = X -> ( F |` Pred ( R , A , x ) ) = ( F |` Pred ( R , A , X ) ) ) |
7 |
6
|
fveq2d |
|- ( x = X -> ( G ` ( F |` Pred ( R , A , x ) ) ) = ( G ` ( F |` Pred ( R , A , X ) ) ) ) |
8 |
4 7
|
eqeq12d |
|- ( x = X -> ( ( F ` x ) = ( G ` ( F |` Pred ( R , A , x ) ) ) <-> ( F ` X ) = ( G ` ( F |` Pred ( R , A , X ) ) ) ) ) |
9 |
1 2 3
|
wfrlem12 |
|- ( x e. dom F -> ( F ` x ) = ( G ` ( F |` Pred ( R , A , x ) ) ) ) |
10 |
8 9
|
vtoclga |
|- ( X e. dom F -> ( F ` X ) = ( G ` ( F |` Pred ( R , A , X ) ) ) ) |