| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wfr3.3 |
|- F = wrecs ( R , A , G ) |
| 2 |
|
simpl |
|- ( ( ( R We A /\ R Se A ) /\ ( H Fn A /\ A. z e. A ( H ` z ) = ( G ` ( H |` Pred ( R , A , z ) ) ) ) ) -> ( R We A /\ R Se A ) ) |
| 3 |
1
|
wfr1 |
|- ( ( R We A /\ R Se A ) -> F Fn A ) |
| 4 |
1
|
wfr2 |
|- ( ( ( R We A /\ R Se A ) /\ z e. A ) -> ( F ` z ) = ( G ` ( F |` Pred ( R , A , z ) ) ) ) |
| 5 |
4
|
ralrimiva |
|- ( ( R We A /\ R Se A ) -> A. z e. A ( F ` z ) = ( G ` ( F |` Pred ( R , A , z ) ) ) ) |
| 6 |
3 5
|
jca |
|- ( ( R We A /\ R Se A ) -> ( F Fn A /\ A. z e. A ( F ` z ) = ( G ` ( F |` Pred ( R , A , z ) ) ) ) ) |
| 7 |
6
|
adantr |
|- ( ( ( R We A /\ R Se A ) /\ ( H Fn A /\ A. z e. A ( H ` z ) = ( G ` ( H |` Pred ( R , A , z ) ) ) ) ) -> ( F Fn A /\ A. z e. A ( F ` z ) = ( G ` ( F |` Pred ( R , A , z ) ) ) ) ) |
| 8 |
|
simpr |
|- ( ( ( R We A /\ R Se A ) /\ ( H Fn A /\ A. z e. A ( H ` z ) = ( G ` ( H |` Pred ( R , A , z ) ) ) ) ) -> ( H Fn A /\ A. z e. A ( H ` z ) = ( G ` ( H |` Pred ( R , A , z ) ) ) ) ) |
| 9 |
|
wfr3g |
|- ( ( ( R We A /\ R Se A ) /\ ( F Fn A /\ A. z e. A ( F ` z ) = ( G ` ( F |` Pred ( R , A , z ) ) ) ) /\ ( H Fn A /\ A. z e. A ( H ` z ) = ( G ` ( H |` Pred ( R , A , z ) ) ) ) ) -> F = H ) |
| 10 |
2 7 8 9
|
syl3anc |
|- ( ( ( R We A /\ R Se A ) /\ ( H Fn A /\ A. z e. A ( H ` z ) = ( G ` ( H |` Pred ( R , A , z ) ) ) ) ) -> F = H ) |