Step |
Hyp |
Ref |
Expression |
1 |
|
wfrfun.1 |
|- R We A |
2 |
|
wfrfun.2 |
|- R Se A |
3 |
|
wfrfun.3 |
|- F = wrecs ( R , A , G ) |
4 |
3
|
wfrrel |
|- Rel F |
5 |
|
df-wrecs |
|- wrecs ( R , A , G ) = U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } |
6 |
3 5
|
eqtri |
|- F = U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } |
7 |
6
|
eleq2i |
|- ( <. x , u >. e. F <-> <. x , u >. e. U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } ) |
8 |
|
eluni |
|- ( <. x , u >. e. U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } <-> E. g ( <. x , u >. e. g /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } ) ) |
9 |
7 8
|
bitri |
|- ( <. x , u >. e. F <-> E. g ( <. x , u >. e. g /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } ) ) |
10 |
|
df-br |
|- ( x F u <-> <. x , u >. e. F ) |
11 |
|
df-br |
|- ( x g u <-> <. x , u >. e. g ) |
12 |
11
|
anbi1i |
|- ( ( x g u /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } ) <-> ( <. x , u >. e. g /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } ) ) |
13 |
12
|
exbii |
|- ( E. g ( x g u /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } ) <-> E. g ( <. x , u >. e. g /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } ) ) |
14 |
9 10 13
|
3bitr4i |
|- ( x F u <-> E. g ( x g u /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } ) ) |
15 |
6
|
eleq2i |
|- ( <. x , v >. e. F <-> <. x , v >. e. U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } ) |
16 |
|
eluni |
|- ( <. x , v >. e. U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } <-> E. h ( <. x , v >. e. h /\ h e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } ) ) |
17 |
15 16
|
bitri |
|- ( <. x , v >. e. F <-> E. h ( <. x , v >. e. h /\ h e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } ) ) |
18 |
|
df-br |
|- ( x F v <-> <. x , v >. e. F ) |
19 |
|
df-br |
|- ( x h v <-> <. x , v >. e. h ) |
20 |
19
|
anbi1i |
|- ( ( x h v /\ h e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } ) <-> ( <. x , v >. e. h /\ h e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } ) ) |
21 |
20
|
exbii |
|- ( E. h ( x h v /\ h e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } ) <-> E. h ( <. x , v >. e. h /\ h e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } ) ) |
22 |
17 18 21
|
3bitr4i |
|- ( x F v <-> E. h ( x h v /\ h e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } ) ) |
23 |
14 22
|
anbi12i |
|- ( ( x F u /\ x F v ) <-> ( E. g ( x g u /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } ) /\ E. h ( x h v /\ h e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } ) ) ) |
24 |
|
exdistrv |
|- ( E. g E. h ( ( x g u /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } ) /\ ( x h v /\ h e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } ) ) <-> ( E. g ( x g u /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } ) /\ E. h ( x h v /\ h e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } ) ) ) |
25 |
23 24
|
bitr4i |
|- ( ( x F u /\ x F v ) <-> E. g E. h ( ( x g u /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } ) /\ ( x h v /\ h e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } ) ) ) |
26 |
|
eqid |
|- { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } |
27 |
1 2 26
|
wfrlem5 |
|- ( ( g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } /\ h e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } ) -> ( ( x g u /\ x h v ) -> u = v ) ) |
28 |
27
|
impcom |
|- ( ( ( x g u /\ x h v ) /\ ( g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } /\ h e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } ) ) -> u = v ) |
29 |
28
|
an4s |
|- ( ( ( x g u /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } ) /\ ( x h v /\ h e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } ) ) -> u = v ) |
30 |
29
|
exlimivv |
|- ( E. g E. h ( ( x g u /\ g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } ) /\ ( x h v /\ h e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( G ` ( f |` Pred ( R , A , y ) ) ) ) } ) ) -> u = v ) |
31 |
25 30
|
sylbi |
|- ( ( x F u /\ x F v ) -> u = v ) |
32 |
31
|
ax-gen |
|- A. v ( ( x F u /\ x F v ) -> u = v ) |
33 |
32
|
gen2 |
|- A. x A. u A. v ( ( x F u /\ x F v ) -> u = v ) |
34 |
|
dffun2 |
|- ( Fun F <-> ( Rel F /\ A. x A. u A. v ( ( x F u /\ x F v ) -> u = v ) ) ) |
35 |
4 33 34
|
mpbir2an |
|- Fun F |