Step |
Hyp |
Ref |
Expression |
1 |
|
wfrlem10.1 |
|- R We A |
2 |
|
wfrlem10.2 |
|- F = wrecs ( R , A , G ) |
3 |
2
|
wfrlem8 |
|- ( Pred ( R , ( A \ dom F ) , z ) = (/) <-> Pred ( R , A , z ) = Pred ( R , dom F , z ) ) |
4 |
3
|
biimpi |
|- ( Pred ( R , ( A \ dom F ) , z ) = (/) -> Pred ( R , A , z ) = Pred ( R , dom F , z ) ) |
5 |
|
predss |
|- Pred ( R , dom F , z ) C_ dom F |
6 |
5
|
a1i |
|- ( z e. ( A \ dom F ) -> Pred ( R , dom F , z ) C_ dom F ) |
7 |
|
simpr |
|- ( ( z e. ( A \ dom F ) /\ w e. dom F ) -> w e. dom F ) |
8 |
|
eldifn |
|- ( z e. ( A \ dom F ) -> -. z e. dom F ) |
9 |
|
eleq1w |
|- ( w = z -> ( w e. dom F <-> z e. dom F ) ) |
10 |
9
|
notbid |
|- ( w = z -> ( -. w e. dom F <-> -. z e. dom F ) ) |
11 |
8 10
|
syl5ibrcom |
|- ( z e. ( A \ dom F ) -> ( w = z -> -. w e. dom F ) ) |
12 |
11
|
con2d |
|- ( z e. ( A \ dom F ) -> ( w e. dom F -> -. w = z ) ) |
13 |
12
|
imp |
|- ( ( z e. ( A \ dom F ) /\ w e. dom F ) -> -. w = z ) |
14 |
|
ssel |
|- ( Pred ( R , A , w ) C_ dom F -> ( z e. Pred ( R , A , w ) -> z e. dom F ) ) |
15 |
14
|
con3d |
|- ( Pred ( R , A , w ) C_ dom F -> ( -. z e. dom F -> -. z e. Pred ( R , A , w ) ) ) |
16 |
8 15
|
syl5com |
|- ( z e. ( A \ dom F ) -> ( Pred ( R , A , w ) C_ dom F -> -. z e. Pred ( R , A , w ) ) ) |
17 |
2
|
wfrdmcl |
|- ( w e. dom F -> Pred ( R , A , w ) C_ dom F ) |
18 |
16 17
|
impel |
|- ( ( z e. ( A \ dom F ) /\ w e. dom F ) -> -. z e. Pred ( R , A , w ) ) |
19 |
|
eldifi |
|- ( z e. ( A \ dom F ) -> z e. A ) |
20 |
|
elpredg |
|- ( ( w e. dom F /\ z e. A ) -> ( z e. Pred ( R , A , w ) <-> z R w ) ) |
21 |
20
|
ancoms |
|- ( ( z e. A /\ w e. dom F ) -> ( z e. Pred ( R , A , w ) <-> z R w ) ) |
22 |
19 21
|
sylan |
|- ( ( z e. ( A \ dom F ) /\ w e. dom F ) -> ( z e. Pred ( R , A , w ) <-> z R w ) ) |
23 |
18 22
|
mtbid |
|- ( ( z e. ( A \ dom F ) /\ w e. dom F ) -> -. z R w ) |
24 |
2
|
wfrdmss |
|- dom F C_ A |
25 |
24
|
sseli |
|- ( w e. dom F -> w e. A ) |
26 |
|
weso |
|- ( R We A -> R Or A ) |
27 |
1 26
|
ax-mp |
|- R Or A |
28 |
|
solin |
|- ( ( R Or A /\ ( w e. A /\ z e. A ) ) -> ( w R z \/ w = z \/ z R w ) ) |
29 |
27 28
|
mpan |
|- ( ( w e. A /\ z e. A ) -> ( w R z \/ w = z \/ z R w ) ) |
30 |
25 19 29
|
syl2anr |
|- ( ( z e. ( A \ dom F ) /\ w e. dom F ) -> ( w R z \/ w = z \/ z R w ) ) |
31 |
13 23 30
|
ecase23d |
|- ( ( z e. ( A \ dom F ) /\ w e. dom F ) -> w R z ) |
32 |
|
vex |
|- w e. _V |
33 |
32
|
elpred |
|- ( z e. _V -> ( w e. Pred ( R , dom F , z ) <-> ( w e. dom F /\ w R z ) ) ) |
34 |
33
|
elv |
|- ( w e. Pred ( R , dom F , z ) <-> ( w e. dom F /\ w R z ) ) |
35 |
7 31 34
|
sylanbrc |
|- ( ( z e. ( A \ dom F ) /\ w e. dom F ) -> w e. Pred ( R , dom F , z ) ) |
36 |
6 35
|
eqelssd |
|- ( z e. ( A \ dom F ) -> Pred ( R , dom F , z ) = dom F ) |
37 |
4 36
|
sylan9eqr |
|- ( ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) -> Pred ( R , A , z ) = dom F ) |