Step |
Hyp |
Ref |
Expression |
1 |
|
wfrlem13.1 |
|- R We A |
2 |
|
wfrlem13.2 |
|- R Se A |
3 |
|
wfrlem13.3 |
|- F = wrecs ( R , A , G ) |
4 |
|
wfrlem13.4 |
|- C = ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) |
5 |
1 2 3
|
wfrfun |
|- Fun F |
6 |
|
vex |
|- z e. _V |
7 |
|
fvex |
|- ( G ` ( F |` Pred ( R , A , z ) ) ) e. _V |
8 |
6 7
|
funsn |
|- Fun { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } |
9 |
5 8
|
pm3.2i |
|- ( Fun F /\ Fun { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) |
10 |
7
|
dmsnop |
|- dom { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } = { z } |
11 |
10
|
ineq2i |
|- ( dom F i^i dom { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) = ( dom F i^i { z } ) |
12 |
|
eldifn |
|- ( z e. ( A \ dom F ) -> -. z e. dom F ) |
13 |
|
disjsn |
|- ( ( dom F i^i { z } ) = (/) <-> -. z e. dom F ) |
14 |
12 13
|
sylibr |
|- ( z e. ( A \ dom F ) -> ( dom F i^i { z } ) = (/) ) |
15 |
11 14
|
eqtrid |
|- ( z e. ( A \ dom F ) -> ( dom F i^i dom { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) = (/) ) |
16 |
|
funun |
|- ( ( ( Fun F /\ Fun { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) /\ ( dom F i^i dom { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) = (/) ) -> Fun ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) ) |
17 |
9 15 16
|
sylancr |
|- ( z e. ( A \ dom F ) -> Fun ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) ) |
18 |
|
dmun |
|- dom ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) = ( dom F u. dom { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) |
19 |
10
|
uneq2i |
|- ( dom F u. dom { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) = ( dom F u. { z } ) |
20 |
18 19
|
eqtri |
|- dom ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) = ( dom F u. { z } ) |
21 |
4
|
fneq1i |
|- ( C Fn ( dom F u. { z } ) <-> ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) Fn ( dom F u. { z } ) ) |
22 |
|
df-fn |
|- ( ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) Fn ( dom F u. { z } ) <-> ( Fun ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) /\ dom ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) = ( dom F u. { z } ) ) ) |
23 |
21 22
|
bitri |
|- ( C Fn ( dom F u. { z } ) <-> ( Fun ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) /\ dom ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) = ( dom F u. { z } ) ) ) |
24 |
17 20 23
|
sylanblrc |
|- ( z e. ( A \ dom F ) -> C Fn ( dom F u. { z } ) ) |