Metamath Proof Explorer


Theorem wfrlem13

Description: Lemma for well-ordered recursion. From here through wfrlem16 , we aim to prove that dom F = A . We do this by supposing that there is an element z of A that is not in dom F . We then define C by extending dom F with the appropriate value at z . We then show that z cannot be an R minimal element of ( A \ dom F ) , meaning that ( A \ dom F ) must be empty, so dom F = A . Here, we show that C is a function extending the domain of F by one. (Contributed by Scott Fenton, 21-Apr-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses wfrlem13.1
|- R We A
wfrlem13.2
|- R Se A
wfrlem13.3
|- F = wrecs ( R , A , G )
wfrlem13.4
|- C = ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } )
Assertion wfrlem13
|- ( z e. ( A \ dom F ) -> C Fn ( dom F u. { z } ) )

Proof

Step Hyp Ref Expression
1 wfrlem13.1
 |-  R We A
2 wfrlem13.2
 |-  R Se A
3 wfrlem13.3
 |-  F = wrecs ( R , A , G )
4 wfrlem13.4
 |-  C = ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } )
5 1 2 3 wfrfun
 |-  Fun F
6 vex
 |-  z e. _V
7 fvex
 |-  ( G ` ( F |` Pred ( R , A , z ) ) ) e. _V
8 6 7 funsn
 |-  Fun { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. }
9 5 8 pm3.2i
 |-  ( Fun F /\ Fun { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } )
10 7 dmsnop
 |-  dom { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } = { z }
11 10 ineq2i
 |-  ( dom F i^i dom { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) = ( dom F i^i { z } )
12 eldifn
 |-  ( z e. ( A \ dom F ) -> -. z e. dom F )
13 disjsn
 |-  ( ( dom F i^i { z } ) = (/) <-> -. z e. dom F )
14 12 13 sylibr
 |-  ( z e. ( A \ dom F ) -> ( dom F i^i { z } ) = (/) )
15 11 14 eqtrid
 |-  ( z e. ( A \ dom F ) -> ( dom F i^i dom { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) = (/) )
16 funun
 |-  ( ( ( Fun F /\ Fun { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) /\ ( dom F i^i dom { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) = (/) ) -> Fun ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) )
17 9 15 16 sylancr
 |-  ( z e. ( A \ dom F ) -> Fun ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) )
18 dmun
 |-  dom ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) = ( dom F u. dom { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } )
19 10 uneq2i
 |-  ( dom F u. dom { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) = ( dom F u. { z } )
20 18 19 eqtri
 |-  dom ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) = ( dom F u. { z } )
21 4 fneq1i
 |-  ( C Fn ( dom F u. { z } ) <-> ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) Fn ( dom F u. { z } ) )
22 df-fn
 |-  ( ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) Fn ( dom F u. { z } ) <-> ( Fun ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) /\ dom ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) = ( dom F u. { z } ) ) )
23 21 22 bitri
 |-  ( C Fn ( dom F u. { z } ) <-> ( Fun ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) /\ dom ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) = ( dom F u. { z } ) ) )
24 17 20 23 sylanblrc
 |-  ( z e. ( A \ dom F ) -> C Fn ( dom F u. { z } ) )