| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							wfrlem13OLD.1 | 
							 |-  R We A  | 
						
						
							| 2 | 
							
								
							 | 
							wfrlem13OLD.2 | 
							 |-  R Se A  | 
						
						
							| 3 | 
							
								
							 | 
							wfrlem13OLD.3 | 
							 |-  F = wrecs ( R , A , G )  | 
						
						
							| 4 | 
							
								
							 | 
							wfrlem13OLD.4 | 
							 |-  C = ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) | 
						
						
							| 5 | 
							
								1 2 3
							 | 
							wfrfunOLD | 
							 |-  Fun F  | 
						
						
							| 6 | 
							
								
							 | 
							vex | 
							 |-  z e. _V  | 
						
						
							| 7 | 
							
								
							 | 
							fvex | 
							 |-  ( G ` ( F |` Pred ( R , A , z ) ) ) e. _V  | 
						
						
							| 8 | 
							
								6 7
							 | 
							funsn | 
							 |-  Fun { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } | 
						
						
							| 9 | 
							
								5 8
							 | 
							pm3.2i | 
							 |-  ( Fun F /\ Fun { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) | 
						
						
							| 10 | 
							
								7
							 | 
							dmsnop | 
							 |-  dom { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } = { z } | 
						
						
							| 11 | 
							
								10
							 | 
							ineq2i | 
							 |-  ( dom F i^i dom { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) = ( dom F i^i { z } ) | 
						
						
							| 12 | 
							
								
							 | 
							eldifn | 
							 |-  ( z e. ( A \ dom F ) -> -. z e. dom F )  | 
						
						
							| 13 | 
							
								
							 | 
							disjsn | 
							 |-  ( ( dom F i^i { z } ) = (/) <-> -. z e. dom F ) | 
						
						
							| 14 | 
							
								12 13
							 | 
							sylibr | 
							 |-  ( z e. ( A \ dom F ) -> ( dom F i^i { z } ) = (/) ) | 
						
						
							| 15 | 
							
								11 14
							 | 
							eqtrid | 
							 |-  ( z e. ( A \ dom F ) -> ( dom F i^i dom { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) = (/) ) | 
						
						
							| 16 | 
							
								
							 | 
							funun | 
							 |-  ( ( ( Fun F /\ Fun { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) /\ ( dom F i^i dom { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) = (/) ) -> Fun ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) ) | 
						
						
							| 17 | 
							
								9 15 16
							 | 
							sylancr | 
							 |-  ( z e. ( A \ dom F ) -> Fun ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) ) | 
						
						
							| 18 | 
							
								
							 | 
							dmun | 
							 |-  dom ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) = ( dom F u. dom { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) | 
						
						
							| 19 | 
							
								10
							 | 
							uneq2i | 
							 |-  ( dom F u. dom { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) = ( dom F u. { z } ) | 
						
						
							| 20 | 
							
								18 19
							 | 
							eqtri | 
							 |-  dom ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) = ( dom F u. { z } ) | 
						
						
							| 21 | 
							
								4
							 | 
							fneq1i | 
							 |-  ( C Fn ( dom F u. { z } ) <-> ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) Fn ( dom F u. { z } ) ) | 
						
						
							| 22 | 
							
								
							 | 
							df-fn | 
							 |-  ( ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) Fn ( dom F u. { z } ) <-> ( Fun ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) /\ dom ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) = ( dom F u. { z } ) ) ) | 
						
						
							| 23 | 
							
								21 22
							 | 
							bitri | 
							 |-  ( C Fn ( dom F u. { z } ) <-> ( Fun ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) /\ dom ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) = ( dom F u. { z } ) ) ) | 
						
						
							| 24 | 
							
								17 20 23
							 | 
							sylanblrc | 
							 |-  ( z e. ( A \ dom F ) -> C Fn ( dom F u. { z } ) ) |