| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wfrlem13OLD.1 |
|- R We A |
| 2 |
|
wfrlem13OLD.2 |
|- R Se A |
| 3 |
|
wfrlem13OLD.3 |
|- F = wrecs ( R , A , G ) |
| 4 |
|
wfrlem13OLD.4 |
|- C = ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) |
| 5 |
1 2 3 4
|
wfrlem13OLD |
|- ( z e. ( A \ dom F ) -> C Fn ( dom F u. { z } ) ) |
| 6 |
|
elun |
|- ( y e. ( dom F u. { z } ) <-> ( y e. dom F \/ y e. { z } ) ) |
| 7 |
|
velsn |
|- ( y e. { z } <-> y = z ) |
| 8 |
7
|
orbi2i |
|- ( ( y e. dom F \/ y e. { z } ) <-> ( y e. dom F \/ y = z ) ) |
| 9 |
6 8
|
bitri |
|- ( y e. ( dom F u. { z } ) <-> ( y e. dom F \/ y = z ) ) |
| 10 |
1 2 3
|
wfrlem12OLD |
|- ( y e. dom F -> ( F ` y ) = ( G ` ( F |` Pred ( R , A , y ) ) ) ) |
| 11 |
|
fnfun |
|- ( C Fn ( dom F u. { z } ) -> Fun C ) |
| 12 |
|
ssun1 |
|- F C_ ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) |
| 13 |
12 4
|
sseqtrri |
|- F C_ C |
| 14 |
|
funssfv |
|- ( ( Fun C /\ F C_ C /\ y e. dom F ) -> ( C ` y ) = ( F ` y ) ) |
| 15 |
3
|
wfrdmclOLD |
|- ( y e. dom F -> Pred ( R , A , y ) C_ dom F ) |
| 16 |
|
fun2ssres |
|- ( ( Fun C /\ F C_ C /\ Pred ( R , A , y ) C_ dom F ) -> ( C |` Pred ( R , A , y ) ) = ( F |` Pred ( R , A , y ) ) ) |
| 17 |
15 16
|
syl3an3 |
|- ( ( Fun C /\ F C_ C /\ y e. dom F ) -> ( C |` Pred ( R , A , y ) ) = ( F |` Pred ( R , A , y ) ) ) |
| 18 |
17
|
fveq2d |
|- ( ( Fun C /\ F C_ C /\ y e. dom F ) -> ( G ` ( C |` Pred ( R , A , y ) ) ) = ( G ` ( F |` Pred ( R , A , y ) ) ) ) |
| 19 |
14 18
|
eqeq12d |
|- ( ( Fun C /\ F C_ C /\ y e. dom F ) -> ( ( C ` y ) = ( G ` ( C |` Pred ( R , A , y ) ) ) <-> ( F ` y ) = ( G ` ( F |` Pred ( R , A , y ) ) ) ) ) |
| 20 |
13 19
|
mp3an2 |
|- ( ( Fun C /\ y e. dom F ) -> ( ( C ` y ) = ( G ` ( C |` Pred ( R , A , y ) ) ) <-> ( F ` y ) = ( G ` ( F |` Pred ( R , A , y ) ) ) ) ) |
| 21 |
11 20
|
sylan |
|- ( ( C Fn ( dom F u. { z } ) /\ y e. dom F ) -> ( ( C ` y ) = ( G ` ( C |` Pred ( R , A , y ) ) ) <-> ( F ` y ) = ( G ` ( F |` Pred ( R , A , y ) ) ) ) ) |
| 22 |
10 21
|
imbitrrid |
|- ( ( C Fn ( dom F u. { z } ) /\ y e. dom F ) -> ( y e. dom F -> ( C ` y ) = ( G ` ( C |` Pred ( R , A , y ) ) ) ) ) |
| 23 |
22
|
ex |
|- ( C Fn ( dom F u. { z } ) -> ( y e. dom F -> ( y e. dom F -> ( C ` y ) = ( G ` ( C |` Pred ( R , A , y ) ) ) ) ) ) |
| 24 |
23
|
pm2.43d |
|- ( C Fn ( dom F u. { z } ) -> ( y e. dom F -> ( C ` y ) = ( G ` ( C |` Pred ( R , A , y ) ) ) ) ) |
| 25 |
|
vsnid |
|- z e. { z } |
| 26 |
|
elun2 |
|- ( z e. { z } -> z e. ( dom F u. { z } ) ) |
| 27 |
25 26
|
ax-mp |
|- z e. ( dom F u. { z } ) |
| 28 |
4
|
reseq1i |
|- ( C |` Pred ( R , A , z ) ) = ( ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) |` Pred ( R , A , z ) ) |
| 29 |
|
resundir |
|- ( ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) |` Pred ( R , A , z ) ) = ( ( F |` Pred ( R , A , z ) ) u. ( { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } |` Pred ( R , A , z ) ) ) |
| 30 |
|
wefr |
|- ( R We A -> R Fr A ) |
| 31 |
1 30
|
ax-mp |
|- R Fr A |
| 32 |
|
predfrirr |
|- ( R Fr A -> -. z e. Pred ( R , A , z ) ) |
| 33 |
|
ressnop0 |
|- ( -. z e. Pred ( R , A , z ) -> ( { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } |` Pred ( R , A , z ) ) = (/) ) |
| 34 |
31 32 33
|
mp2b |
|- ( { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } |` Pred ( R , A , z ) ) = (/) |
| 35 |
34
|
uneq2i |
|- ( ( F |` Pred ( R , A , z ) ) u. ( { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } |` Pred ( R , A , z ) ) ) = ( ( F |` Pred ( R , A , z ) ) u. (/) ) |
| 36 |
|
un0 |
|- ( ( F |` Pred ( R , A , z ) ) u. (/) ) = ( F |` Pred ( R , A , z ) ) |
| 37 |
35 36
|
eqtri |
|- ( ( F |` Pred ( R , A , z ) ) u. ( { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } |` Pred ( R , A , z ) ) ) = ( F |` Pred ( R , A , z ) ) |
| 38 |
28 29 37
|
3eqtri |
|- ( C |` Pred ( R , A , z ) ) = ( F |` Pred ( R , A , z ) ) |
| 39 |
38
|
fveq2i |
|- ( G ` ( C |` Pred ( R , A , z ) ) ) = ( G ` ( F |` Pred ( R , A , z ) ) ) |
| 40 |
39
|
opeq2i |
|- <. z , ( G ` ( C |` Pred ( R , A , z ) ) ) >. = <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. |
| 41 |
|
opex |
|- <. z , ( G ` ( C |` Pred ( R , A , z ) ) ) >. e. _V |
| 42 |
41
|
elsn |
|- ( <. z , ( G ` ( C |` Pred ( R , A , z ) ) ) >. e. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } <-> <. z , ( G ` ( C |` Pred ( R , A , z ) ) ) >. = <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. ) |
| 43 |
40 42
|
mpbir |
|- <. z , ( G ` ( C |` Pred ( R , A , z ) ) ) >. e. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } |
| 44 |
|
elun2 |
|- ( <. z , ( G ` ( C |` Pred ( R , A , z ) ) ) >. e. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } -> <. z , ( G ` ( C |` Pred ( R , A , z ) ) ) >. e. ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) ) |
| 45 |
43 44
|
ax-mp |
|- <. z , ( G ` ( C |` Pred ( R , A , z ) ) ) >. e. ( F u. { <. z , ( G ` ( F |` Pred ( R , A , z ) ) ) >. } ) |
| 46 |
45 4
|
eleqtrri |
|- <. z , ( G ` ( C |` Pred ( R , A , z ) ) ) >. e. C |
| 47 |
|
fnopfvb |
|- ( ( C Fn ( dom F u. { z } ) /\ z e. ( dom F u. { z } ) ) -> ( ( C ` z ) = ( G ` ( C |` Pred ( R , A , z ) ) ) <-> <. z , ( G ` ( C |` Pred ( R , A , z ) ) ) >. e. C ) ) |
| 48 |
46 47
|
mpbiri |
|- ( ( C Fn ( dom F u. { z } ) /\ z e. ( dom F u. { z } ) ) -> ( C ` z ) = ( G ` ( C |` Pred ( R , A , z ) ) ) ) |
| 49 |
27 48
|
mpan2 |
|- ( C Fn ( dom F u. { z } ) -> ( C ` z ) = ( G ` ( C |` Pred ( R , A , z ) ) ) ) |
| 50 |
|
fveq2 |
|- ( y = z -> ( C ` y ) = ( C ` z ) ) |
| 51 |
|
predeq3 |
|- ( y = z -> Pred ( R , A , y ) = Pred ( R , A , z ) ) |
| 52 |
51
|
reseq2d |
|- ( y = z -> ( C |` Pred ( R , A , y ) ) = ( C |` Pred ( R , A , z ) ) ) |
| 53 |
52
|
fveq2d |
|- ( y = z -> ( G ` ( C |` Pred ( R , A , y ) ) ) = ( G ` ( C |` Pred ( R , A , z ) ) ) ) |
| 54 |
50 53
|
eqeq12d |
|- ( y = z -> ( ( C ` y ) = ( G ` ( C |` Pred ( R , A , y ) ) ) <-> ( C ` z ) = ( G ` ( C |` Pred ( R , A , z ) ) ) ) ) |
| 55 |
49 54
|
syl5ibrcom |
|- ( C Fn ( dom F u. { z } ) -> ( y = z -> ( C ` y ) = ( G ` ( C |` Pred ( R , A , y ) ) ) ) ) |
| 56 |
24 55
|
jaod |
|- ( C Fn ( dom F u. { z } ) -> ( ( y e. dom F \/ y = z ) -> ( C ` y ) = ( G ` ( C |` Pred ( R , A , y ) ) ) ) ) |
| 57 |
9 56
|
biimtrid |
|- ( C Fn ( dom F u. { z } ) -> ( y e. ( dom F u. { z } ) -> ( C ` y ) = ( G ` ( C |` Pred ( R , A , y ) ) ) ) ) |
| 58 |
5 57
|
syl |
|- ( z e. ( A \ dom F ) -> ( y e. ( dom F u. { z } ) -> ( C ` y ) = ( G ` ( C |` Pred ( R , A , y ) ) ) ) ) |