| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wfrlem1OLD.1 |  |-  B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( F ` ( f |` Pred ( R , A , y ) ) ) ) } | 
						
							| 2 | 1 | wfrlem1OLD |  |-  B = { g | E. z ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) /\ A. w e. z ( g ` w ) = ( F ` ( g |` Pred ( R , A , w ) ) ) ) } | 
						
							| 3 | 2 | eqabri |  |-  ( g e. B <-> E. z ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) /\ A. w e. z ( g ` w ) = ( F ` ( g |` Pred ( R , A , w ) ) ) ) ) | 
						
							| 4 |  | fndm |  |-  ( g Fn z -> dom g = z ) | 
						
							| 5 | 4 | sseq1d |  |-  ( g Fn z -> ( dom g C_ A <-> z C_ A ) ) | 
						
							| 6 | 5 | biimpar |  |-  ( ( g Fn z /\ z C_ A ) -> dom g C_ A ) | 
						
							| 7 | 6 | adantrr |  |-  ( ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) ) -> dom g C_ A ) | 
						
							| 8 | 7 | 3adant3 |  |-  ( ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) /\ A. w e. z ( g ` w ) = ( F ` ( g |` Pred ( R , A , w ) ) ) ) -> dom g C_ A ) | 
						
							| 9 | 8 | exlimiv |  |-  ( E. z ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) /\ A. w e. z ( g ` w ) = ( F ` ( g |` Pred ( R , A , w ) ) ) ) -> dom g C_ A ) | 
						
							| 10 | 3 9 | sylbi |  |-  ( g e. B -> dom g C_ A ) |