| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wfrlem1OLD.1 |  |-  B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( F ` ( f |` Pred ( R , A , y ) ) ) ) } | 
						
							| 2 |  | wfrlem3OLDa.2 |  |-  G e. _V | 
						
							| 3 |  | fneq1 |  |-  ( g = G -> ( g Fn z <-> G Fn z ) ) | 
						
							| 4 |  | fveq1 |  |-  ( g = G -> ( g ` w ) = ( G ` w ) ) | 
						
							| 5 |  | reseq1 |  |-  ( g = G -> ( g |` Pred ( R , A , w ) ) = ( G |` Pred ( R , A , w ) ) ) | 
						
							| 6 | 5 | fveq2d |  |-  ( g = G -> ( F ` ( g |` Pred ( R , A , w ) ) ) = ( F ` ( G |` Pred ( R , A , w ) ) ) ) | 
						
							| 7 | 4 6 | eqeq12d |  |-  ( g = G -> ( ( g ` w ) = ( F ` ( g |` Pred ( R , A , w ) ) ) <-> ( G ` w ) = ( F ` ( G |` Pred ( R , A , w ) ) ) ) ) | 
						
							| 8 | 7 | ralbidv |  |-  ( g = G -> ( A. w e. z ( g ` w ) = ( F ` ( g |` Pred ( R , A , w ) ) ) <-> A. w e. z ( G ` w ) = ( F ` ( G |` Pred ( R , A , w ) ) ) ) ) | 
						
							| 9 | 3 8 | 3anbi13d |  |-  ( g = G -> ( ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) /\ A. w e. z ( g ` w ) = ( F ` ( g |` Pred ( R , A , w ) ) ) ) <-> ( G Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) /\ A. w e. z ( G ` w ) = ( F ` ( G |` Pred ( R , A , w ) ) ) ) ) ) | 
						
							| 10 | 9 | exbidv |  |-  ( g = G -> ( E. z ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) /\ A. w e. z ( g ` w ) = ( F ` ( g |` Pred ( R , A , w ) ) ) ) <-> E. z ( G Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) /\ A. w e. z ( G ` w ) = ( F ` ( G |` Pred ( R , A , w ) ) ) ) ) ) | 
						
							| 11 | 1 | wfrlem1OLD |  |-  B = { g | E. z ( g Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) /\ A. w e. z ( g ` w ) = ( F ` ( g |` Pred ( R , A , w ) ) ) ) } | 
						
							| 12 | 2 10 11 | elab2 |  |-  ( G e. B <-> E. z ( G Fn z /\ ( z C_ A /\ A. w e. z Pred ( R , A , w ) C_ z ) /\ A. w e. z ( G ` w ) = ( F ` ( G |` Pred ( R , A , w ) ) ) ) ) |