| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wfrlem4OLD.2 |  |-  B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( F ` ( f |` Pred ( R , A , y ) ) ) ) } | 
						
							| 2 | 1 | wfrlem2OLD |  |-  ( g e. B -> Fun g ) | 
						
							| 3 | 2 | funfnd |  |-  ( g e. B -> g Fn dom g ) | 
						
							| 4 |  | fnresin1 |  |-  ( g Fn dom g -> ( g |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( g e. B -> ( g |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) ) | 
						
							| 6 | 5 | adantr |  |-  ( ( g e. B /\ h e. B ) -> ( g |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) ) | 
						
							| 7 | 1 | wfrlem1OLD |  |-  B = { g | E. b ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( F ` ( g |` Pred ( R , A , a ) ) ) ) } | 
						
							| 8 | 7 | eqabri |  |-  ( g e. B <-> E. b ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( F ` ( g |` Pred ( R , A , a ) ) ) ) ) | 
						
							| 9 |  | fndm |  |-  ( g Fn b -> dom g = b ) | 
						
							| 10 | 9 | raleqdv |  |-  ( g Fn b -> ( A. a e. dom g ( g ` a ) = ( F ` ( g |` Pred ( R , A , a ) ) ) <-> A. a e. b ( g ` a ) = ( F ` ( g |` Pred ( R , A , a ) ) ) ) ) | 
						
							| 11 | 10 | biimpar |  |-  ( ( g Fn b /\ A. a e. b ( g ` a ) = ( F ` ( g |` Pred ( R , A , a ) ) ) ) -> A. a e. dom g ( g ` a ) = ( F ` ( g |` Pred ( R , A , a ) ) ) ) | 
						
							| 12 |  | rsp |  |-  ( A. a e. dom g ( g ` a ) = ( F ` ( g |` Pred ( R , A , a ) ) ) -> ( a e. dom g -> ( g ` a ) = ( F ` ( g |` Pred ( R , A , a ) ) ) ) ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( g Fn b /\ A. a e. b ( g ` a ) = ( F ` ( g |` Pred ( R , A , a ) ) ) ) -> ( a e. dom g -> ( g ` a ) = ( F ` ( g |` Pred ( R , A , a ) ) ) ) ) | 
						
							| 14 | 13 | 3adant2 |  |-  ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( F ` ( g |` Pred ( R , A , a ) ) ) ) -> ( a e. dom g -> ( g ` a ) = ( F ` ( g |` Pred ( R , A , a ) ) ) ) ) | 
						
							| 15 | 14 | exlimiv |  |-  ( E. b ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( F ` ( g |` Pred ( R , A , a ) ) ) ) -> ( a e. dom g -> ( g ` a ) = ( F ` ( g |` Pred ( R , A , a ) ) ) ) ) | 
						
							| 16 | 8 15 | sylbi |  |-  ( g e. B -> ( a e. dom g -> ( g ` a ) = ( F ` ( g |` Pred ( R , A , a ) ) ) ) ) | 
						
							| 17 |  | elinel1 |  |-  ( a e. ( dom g i^i dom h ) -> a e. dom g ) | 
						
							| 18 | 16 17 | impel |  |-  ( ( g e. B /\ a e. ( dom g i^i dom h ) ) -> ( g ` a ) = ( F ` ( g |` Pred ( R , A , a ) ) ) ) | 
						
							| 19 | 18 | adantlr |  |-  ( ( ( g e. B /\ h e. B ) /\ a e. ( dom g i^i dom h ) ) -> ( g ` a ) = ( F ` ( g |` Pred ( R , A , a ) ) ) ) | 
						
							| 20 |  | fvres |  |-  ( a e. ( dom g i^i dom h ) -> ( ( g |` ( dom g i^i dom h ) ) ` a ) = ( g ` a ) ) | 
						
							| 21 | 20 | adantl |  |-  ( ( ( g e. B /\ h e. B ) /\ a e. ( dom g i^i dom h ) ) -> ( ( g |` ( dom g i^i dom h ) ) ` a ) = ( g ` a ) ) | 
						
							| 22 |  | resres |  |-  ( ( g |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) = ( g |` ( ( dom g i^i dom h ) i^i Pred ( R , ( dom g i^i dom h ) , a ) ) ) | 
						
							| 23 |  | predss |  |-  Pred ( R , ( dom g i^i dom h ) , a ) C_ ( dom g i^i dom h ) | 
						
							| 24 |  | sseqin2 |  |-  ( Pred ( R , ( dom g i^i dom h ) , a ) C_ ( dom g i^i dom h ) <-> ( ( dom g i^i dom h ) i^i Pred ( R , ( dom g i^i dom h ) , a ) ) = Pred ( R , ( dom g i^i dom h ) , a ) ) | 
						
							| 25 | 23 24 | mpbi |  |-  ( ( dom g i^i dom h ) i^i Pred ( R , ( dom g i^i dom h ) , a ) ) = Pred ( R , ( dom g i^i dom h ) , a ) | 
						
							| 26 | 1 | wfrlem1OLD |  |-  B = { h | E. c ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( F ` ( h |` Pred ( R , A , a ) ) ) ) } | 
						
							| 27 | 26 | eqabri |  |-  ( h e. B <-> E. c ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( F ` ( h |` Pred ( R , A , a ) ) ) ) ) | 
						
							| 28 |  | 3an6 |  |-  ( ( ( g Fn b /\ h Fn c ) /\ ( ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) ) /\ ( A. a e. b ( g ` a ) = ( F ` ( g |` Pred ( R , A , a ) ) ) /\ A. a e. c ( h ` a ) = ( F ` ( h |` Pred ( R , A , a ) ) ) ) ) <-> ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( F ` ( g |` Pred ( R , A , a ) ) ) ) /\ ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( F ` ( h |` Pred ( R , A , a ) ) ) ) ) ) | 
						
							| 29 | 28 | 2exbii |  |-  ( E. b E. c ( ( g Fn b /\ h Fn c ) /\ ( ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) ) /\ ( A. a e. b ( g ` a ) = ( F ` ( g |` Pred ( R , A , a ) ) ) /\ A. a e. c ( h ` a ) = ( F ` ( h |` Pred ( R , A , a ) ) ) ) ) <-> E. b E. c ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( F ` ( g |` Pred ( R , A , a ) ) ) ) /\ ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( F ` ( h |` Pred ( R , A , a ) ) ) ) ) ) | 
						
							| 30 |  | exdistrv |  |-  ( E. b E. c ( ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( F ` ( g |` Pred ( R , A , a ) ) ) ) /\ ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( F ` ( h |` Pred ( R , A , a ) ) ) ) ) <-> ( E. b ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( F ` ( g |` Pred ( R , A , a ) ) ) ) /\ E. c ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( F ` ( h |` Pred ( R , A , a ) ) ) ) ) ) | 
						
							| 31 | 29 30 | bitri |  |-  ( E. b E. c ( ( g Fn b /\ h Fn c ) /\ ( ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) ) /\ ( A. a e. b ( g ` a ) = ( F ` ( g |` Pred ( R , A , a ) ) ) /\ A. a e. c ( h ` a ) = ( F ` ( h |` Pred ( R , A , a ) ) ) ) ) <-> ( E. b ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( F ` ( g |` Pred ( R , A , a ) ) ) ) /\ E. c ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( F ` ( h |` Pred ( R , A , a ) ) ) ) ) ) | 
						
							| 32 |  | ssinss1 |  |-  ( b C_ A -> ( b i^i c ) C_ A ) | 
						
							| 33 | 32 | ad2antrr |  |-  ( ( ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) ) -> ( b i^i c ) C_ A ) | 
						
							| 34 |  | nfra1 |  |-  F/ a A. a e. b Pred ( R , A , a ) C_ b | 
						
							| 35 |  | nfra1 |  |-  F/ a A. a e. c Pred ( R , A , a ) C_ c | 
						
							| 36 | 34 35 | nfan |  |-  F/ a ( A. a e. b Pred ( R , A , a ) C_ b /\ A. a e. c Pred ( R , A , a ) C_ c ) | 
						
							| 37 |  | elinel1 |  |-  ( a e. ( b i^i c ) -> a e. b ) | 
						
							| 38 |  | rsp |  |-  ( A. a e. b Pred ( R , A , a ) C_ b -> ( a e. b -> Pred ( R , A , a ) C_ b ) ) | 
						
							| 39 | 37 38 | syl5com |  |-  ( a e. ( b i^i c ) -> ( A. a e. b Pred ( R , A , a ) C_ b -> Pred ( R , A , a ) C_ b ) ) | 
						
							| 40 |  | elinel2 |  |-  ( a e. ( b i^i c ) -> a e. c ) | 
						
							| 41 |  | rsp |  |-  ( A. a e. c Pred ( R , A , a ) C_ c -> ( a e. c -> Pred ( R , A , a ) C_ c ) ) | 
						
							| 42 | 40 41 | syl5com |  |-  ( a e. ( b i^i c ) -> ( A. a e. c Pred ( R , A , a ) C_ c -> Pred ( R , A , a ) C_ c ) ) | 
						
							| 43 | 39 42 | anim12d |  |-  ( a e. ( b i^i c ) -> ( ( A. a e. b Pred ( R , A , a ) C_ b /\ A. a e. c Pred ( R , A , a ) C_ c ) -> ( Pred ( R , A , a ) C_ b /\ Pred ( R , A , a ) C_ c ) ) ) | 
						
							| 44 |  | ssin |  |-  ( ( Pred ( R , A , a ) C_ b /\ Pred ( R , A , a ) C_ c ) <-> Pred ( R , A , a ) C_ ( b i^i c ) ) | 
						
							| 45 | 44 | biimpi |  |-  ( ( Pred ( R , A , a ) C_ b /\ Pred ( R , A , a ) C_ c ) -> Pred ( R , A , a ) C_ ( b i^i c ) ) | 
						
							| 46 | 43 45 | syl6com |  |-  ( ( A. a e. b Pred ( R , A , a ) C_ b /\ A. a e. c Pred ( R , A , a ) C_ c ) -> ( a e. ( b i^i c ) -> Pred ( R , A , a ) C_ ( b i^i c ) ) ) | 
						
							| 47 | 36 46 | ralrimi |  |-  ( ( A. a e. b Pred ( R , A , a ) C_ b /\ A. a e. c Pred ( R , A , a ) C_ c ) -> A. a e. ( b i^i c ) Pred ( R , A , a ) C_ ( b i^i c ) ) | 
						
							| 48 | 47 | ad2ant2l |  |-  ( ( ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) ) -> A. a e. ( b i^i c ) Pred ( R , A , a ) C_ ( b i^i c ) ) | 
						
							| 49 | 33 48 | jca |  |-  ( ( ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) ) -> ( ( b i^i c ) C_ A /\ A. a e. ( b i^i c ) Pred ( R , A , a ) C_ ( b i^i c ) ) ) | 
						
							| 50 |  | fndm |  |-  ( h Fn c -> dom h = c ) | 
						
							| 51 | 9 50 | ineqan12d |  |-  ( ( g Fn b /\ h Fn c ) -> ( dom g i^i dom h ) = ( b i^i c ) ) | 
						
							| 52 |  | sseq1 |  |-  ( ( dom g i^i dom h ) = ( b i^i c ) -> ( ( dom g i^i dom h ) C_ A <-> ( b i^i c ) C_ A ) ) | 
						
							| 53 |  | sseq2 |  |-  ( ( dom g i^i dom h ) = ( b i^i c ) -> ( Pred ( R , A , a ) C_ ( dom g i^i dom h ) <-> Pred ( R , A , a ) C_ ( b i^i c ) ) ) | 
						
							| 54 | 53 | raleqbi1dv |  |-  ( ( dom g i^i dom h ) = ( b i^i c ) -> ( A. a e. ( dom g i^i dom h ) Pred ( R , A , a ) C_ ( dom g i^i dom h ) <-> A. a e. ( b i^i c ) Pred ( R , A , a ) C_ ( b i^i c ) ) ) | 
						
							| 55 | 52 54 | anbi12d |  |-  ( ( dom g i^i dom h ) = ( b i^i c ) -> ( ( ( dom g i^i dom h ) C_ A /\ A. a e. ( dom g i^i dom h ) Pred ( R , A , a ) C_ ( dom g i^i dom h ) ) <-> ( ( b i^i c ) C_ A /\ A. a e. ( b i^i c ) Pred ( R , A , a ) C_ ( b i^i c ) ) ) ) | 
						
							| 56 | 55 | imbi2d |  |-  ( ( dom g i^i dom h ) = ( b i^i c ) -> ( ( ( ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) ) -> ( ( dom g i^i dom h ) C_ A /\ A. a e. ( dom g i^i dom h ) Pred ( R , A , a ) C_ ( dom g i^i dom h ) ) ) <-> ( ( ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) ) -> ( ( b i^i c ) C_ A /\ A. a e. ( b i^i c ) Pred ( R , A , a ) C_ ( b i^i c ) ) ) ) ) | 
						
							| 57 | 51 56 | syl |  |-  ( ( g Fn b /\ h Fn c ) -> ( ( ( ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) ) -> ( ( dom g i^i dom h ) C_ A /\ A. a e. ( dom g i^i dom h ) Pred ( R , A , a ) C_ ( dom g i^i dom h ) ) ) <-> ( ( ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) ) -> ( ( b i^i c ) C_ A /\ A. a e. ( b i^i c ) Pred ( R , A , a ) C_ ( b i^i c ) ) ) ) ) | 
						
							| 58 | 49 57 | mpbiri |  |-  ( ( g Fn b /\ h Fn c ) -> ( ( ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) ) -> ( ( dom g i^i dom h ) C_ A /\ A. a e. ( dom g i^i dom h ) Pred ( R , A , a ) C_ ( dom g i^i dom h ) ) ) ) | 
						
							| 59 | 58 | imp |  |-  ( ( ( g Fn b /\ h Fn c ) /\ ( ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) ) ) -> ( ( dom g i^i dom h ) C_ A /\ A. a e. ( dom g i^i dom h ) Pred ( R , A , a ) C_ ( dom g i^i dom h ) ) ) | 
						
							| 60 | 59 | 3adant3 |  |-  ( ( ( g Fn b /\ h Fn c ) /\ ( ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) ) /\ ( A. a e. b ( g ` a ) = ( F ` ( g |` Pred ( R , A , a ) ) ) /\ A. a e. c ( h ` a ) = ( F ` ( h |` Pred ( R , A , a ) ) ) ) ) -> ( ( dom g i^i dom h ) C_ A /\ A. a e. ( dom g i^i dom h ) Pred ( R , A , a ) C_ ( dom g i^i dom h ) ) ) | 
						
							| 61 | 60 | exlimivv |  |-  ( E. b E. c ( ( g Fn b /\ h Fn c ) /\ ( ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) ) /\ ( A. a e. b ( g ` a ) = ( F ` ( g |` Pred ( R , A , a ) ) ) /\ A. a e. c ( h ` a ) = ( F ` ( h |` Pred ( R , A , a ) ) ) ) ) -> ( ( dom g i^i dom h ) C_ A /\ A. a e. ( dom g i^i dom h ) Pred ( R , A , a ) C_ ( dom g i^i dom h ) ) ) | 
						
							| 62 | 31 61 | sylbir |  |-  ( ( E. b ( g Fn b /\ ( b C_ A /\ A. a e. b Pred ( R , A , a ) C_ b ) /\ A. a e. b ( g ` a ) = ( F ` ( g |` Pred ( R , A , a ) ) ) ) /\ E. c ( h Fn c /\ ( c C_ A /\ A. a e. c Pred ( R , A , a ) C_ c ) /\ A. a e. c ( h ` a ) = ( F ` ( h |` Pred ( R , A , a ) ) ) ) ) -> ( ( dom g i^i dom h ) C_ A /\ A. a e. ( dom g i^i dom h ) Pred ( R , A , a ) C_ ( dom g i^i dom h ) ) ) | 
						
							| 63 | 8 27 62 | syl2anb |  |-  ( ( g e. B /\ h e. B ) -> ( ( dom g i^i dom h ) C_ A /\ A. a e. ( dom g i^i dom h ) Pred ( R , A , a ) C_ ( dom g i^i dom h ) ) ) | 
						
							| 64 | 63 | adantr |  |-  ( ( ( g e. B /\ h e. B ) /\ a e. ( dom g i^i dom h ) ) -> ( ( dom g i^i dom h ) C_ A /\ A. a e. ( dom g i^i dom h ) Pred ( R , A , a ) C_ ( dom g i^i dom h ) ) ) | 
						
							| 65 |  | simpr |  |-  ( ( ( g e. B /\ h e. B ) /\ a e. ( dom g i^i dom h ) ) -> a e. ( dom g i^i dom h ) ) | 
						
							| 66 |  | preddowncl |  |-  ( ( ( dom g i^i dom h ) C_ A /\ A. a e. ( dom g i^i dom h ) Pred ( R , A , a ) C_ ( dom g i^i dom h ) ) -> ( a e. ( dom g i^i dom h ) -> Pred ( R , ( dom g i^i dom h ) , a ) = Pred ( R , A , a ) ) ) | 
						
							| 67 | 64 65 66 | sylc |  |-  ( ( ( g e. B /\ h e. B ) /\ a e. ( dom g i^i dom h ) ) -> Pred ( R , ( dom g i^i dom h ) , a ) = Pred ( R , A , a ) ) | 
						
							| 68 | 25 67 | eqtrid |  |-  ( ( ( g e. B /\ h e. B ) /\ a e. ( dom g i^i dom h ) ) -> ( ( dom g i^i dom h ) i^i Pred ( R , ( dom g i^i dom h ) , a ) ) = Pred ( R , A , a ) ) | 
						
							| 69 | 68 | reseq2d |  |-  ( ( ( g e. B /\ h e. B ) /\ a e. ( dom g i^i dom h ) ) -> ( g |` ( ( dom g i^i dom h ) i^i Pred ( R , ( dom g i^i dom h ) , a ) ) ) = ( g |` Pred ( R , A , a ) ) ) | 
						
							| 70 | 22 69 | eqtrid |  |-  ( ( ( g e. B /\ h e. B ) /\ a e. ( dom g i^i dom h ) ) -> ( ( g |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) = ( g |` Pred ( R , A , a ) ) ) | 
						
							| 71 | 70 | fveq2d |  |-  ( ( ( g e. B /\ h e. B ) /\ a e. ( dom g i^i dom h ) ) -> ( F ` ( ( g |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) = ( F ` ( g |` Pred ( R , A , a ) ) ) ) | 
						
							| 72 | 19 21 71 | 3eqtr4d |  |-  ( ( ( g e. B /\ h e. B ) /\ a e. ( dom g i^i dom h ) ) -> ( ( g |` ( dom g i^i dom h ) ) ` a ) = ( F ` ( ( g |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) ) | 
						
							| 73 | 72 | ralrimiva |  |-  ( ( g e. B /\ h e. B ) -> A. a e. ( dom g i^i dom h ) ( ( g |` ( dom g i^i dom h ) ) ` a ) = ( F ` ( ( g |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) ) | 
						
							| 74 | 6 73 | jca |  |-  ( ( g e. B /\ h e. B ) -> ( ( g |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) /\ A. a e. ( dom g i^i dom h ) ( ( g |` ( dom g i^i dom h ) ) ` a ) = ( F ` ( ( g |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) ) ) |