| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wfrlem5OLD.1 |  |-  R We A | 
						
							| 2 |  | wfrlem5OLD.2 |  |-  R Se A | 
						
							| 3 |  | wfrlem5OLD.3 |  |-  B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( F ` ( f |` Pred ( R , A , y ) ) ) ) } | 
						
							| 4 |  | vex |  |-  x e. _V | 
						
							| 5 |  | vex |  |-  u e. _V | 
						
							| 6 | 4 5 | breldm |  |-  ( x g u -> x e. dom g ) | 
						
							| 7 |  | vex |  |-  v e. _V | 
						
							| 8 | 4 7 | breldm |  |-  ( x h v -> x e. dom h ) | 
						
							| 9 | 6 8 | anim12i |  |-  ( ( x g u /\ x h v ) -> ( x e. dom g /\ x e. dom h ) ) | 
						
							| 10 |  | elin |  |-  ( x e. ( dom g i^i dom h ) <-> ( x e. dom g /\ x e. dom h ) ) | 
						
							| 11 | 9 10 | sylibr |  |-  ( ( x g u /\ x h v ) -> x e. ( dom g i^i dom h ) ) | 
						
							| 12 |  | anandi |  |-  ( ( x e. ( dom g i^i dom h ) /\ ( x g u /\ x h v ) ) <-> ( ( x e. ( dom g i^i dom h ) /\ x g u ) /\ ( x e. ( dom g i^i dom h ) /\ x h v ) ) ) | 
						
							| 13 | 5 | brresi |  |-  ( x ( g |` ( dom g i^i dom h ) ) u <-> ( x e. ( dom g i^i dom h ) /\ x g u ) ) | 
						
							| 14 | 7 | brresi |  |-  ( x ( h |` ( dom g i^i dom h ) ) v <-> ( x e. ( dom g i^i dom h ) /\ x h v ) ) | 
						
							| 15 | 13 14 | anbi12i |  |-  ( ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( h |` ( dom g i^i dom h ) ) v ) <-> ( ( x e. ( dom g i^i dom h ) /\ x g u ) /\ ( x e. ( dom g i^i dom h ) /\ x h v ) ) ) | 
						
							| 16 | 12 15 | sylbb2 |  |-  ( ( x e. ( dom g i^i dom h ) /\ ( x g u /\ x h v ) ) -> ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( h |` ( dom g i^i dom h ) ) v ) ) | 
						
							| 17 | 11 16 | mpancom |  |-  ( ( x g u /\ x h v ) -> ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( h |` ( dom g i^i dom h ) ) v ) ) | 
						
							| 18 | 3 | wfrlem3OLD |  |-  ( g e. B -> dom g C_ A ) | 
						
							| 19 |  | ssinss1 |  |-  ( dom g C_ A -> ( dom g i^i dom h ) C_ A ) | 
						
							| 20 |  | wess |  |-  ( ( dom g i^i dom h ) C_ A -> ( R We A -> R We ( dom g i^i dom h ) ) ) | 
						
							| 21 | 1 20 | mpi |  |-  ( ( dom g i^i dom h ) C_ A -> R We ( dom g i^i dom h ) ) | 
						
							| 22 |  | sess2 |  |-  ( ( dom g i^i dom h ) C_ A -> ( R Se A -> R Se ( dom g i^i dom h ) ) ) | 
						
							| 23 | 2 22 | mpi |  |-  ( ( dom g i^i dom h ) C_ A -> R Se ( dom g i^i dom h ) ) | 
						
							| 24 | 21 23 | jca |  |-  ( ( dom g i^i dom h ) C_ A -> ( R We ( dom g i^i dom h ) /\ R Se ( dom g i^i dom h ) ) ) | 
						
							| 25 | 18 19 24 | 3syl |  |-  ( g e. B -> ( R We ( dom g i^i dom h ) /\ R Se ( dom g i^i dom h ) ) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( g e. B /\ h e. B ) -> ( R We ( dom g i^i dom h ) /\ R Se ( dom g i^i dom h ) ) ) | 
						
							| 27 | 3 | wfrlem4OLD |  |-  ( ( g e. B /\ h e. B ) -> ( ( g |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) /\ A. a e. ( dom g i^i dom h ) ( ( g |` ( dom g i^i dom h ) ) ` a ) = ( F ` ( ( g |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) ) ) | 
						
							| 28 | 3 | wfrlem4OLD |  |-  ( ( h e. B /\ g e. B ) -> ( ( h |` ( dom h i^i dom g ) ) Fn ( dom h i^i dom g ) /\ A. a e. ( dom h i^i dom g ) ( ( h |` ( dom h i^i dom g ) ) ` a ) = ( F ` ( ( h |` ( dom h i^i dom g ) ) |` Pred ( R , ( dom h i^i dom g ) , a ) ) ) ) ) | 
						
							| 29 | 28 | ancoms |  |-  ( ( g e. B /\ h e. B ) -> ( ( h |` ( dom h i^i dom g ) ) Fn ( dom h i^i dom g ) /\ A. a e. ( dom h i^i dom g ) ( ( h |` ( dom h i^i dom g ) ) ` a ) = ( F ` ( ( h |` ( dom h i^i dom g ) ) |` Pred ( R , ( dom h i^i dom g ) , a ) ) ) ) ) | 
						
							| 30 |  | incom |  |-  ( dom g i^i dom h ) = ( dom h i^i dom g ) | 
						
							| 31 | 30 | reseq2i |  |-  ( h |` ( dom g i^i dom h ) ) = ( h |` ( dom h i^i dom g ) ) | 
						
							| 32 | 31 | fneq1i |  |-  ( ( h |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) <-> ( h |` ( dom h i^i dom g ) ) Fn ( dom g i^i dom h ) ) | 
						
							| 33 | 30 | fneq2i |  |-  ( ( h |` ( dom h i^i dom g ) ) Fn ( dom g i^i dom h ) <-> ( h |` ( dom h i^i dom g ) ) Fn ( dom h i^i dom g ) ) | 
						
							| 34 | 32 33 | bitri |  |-  ( ( h |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) <-> ( h |` ( dom h i^i dom g ) ) Fn ( dom h i^i dom g ) ) | 
						
							| 35 | 31 | fveq1i |  |-  ( ( h |` ( dom g i^i dom h ) ) ` a ) = ( ( h |` ( dom h i^i dom g ) ) ` a ) | 
						
							| 36 |  | predeq2 |  |-  ( ( dom g i^i dom h ) = ( dom h i^i dom g ) -> Pred ( R , ( dom g i^i dom h ) , a ) = Pred ( R , ( dom h i^i dom g ) , a ) ) | 
						
							| 37 | 30 36 | ax-mp |  |-  Pred ( R , ( dom g i^i dom h ) , a ) = Pred ( R , ( dom h i^i dom g ) , a ) | 
						
							| 38 | 31 37 | reseq12i |  |-  ( ( h |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) = ( ( h |` ( dom h i^i dom g ) ) |` Pred ( R , ( dom h i^i dom g ) , a ) ) | 
						
							| 39 | 38 | fveq2i |  |-  ( F ` ( ( h |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) = ( F ` ( ( h |` ( dom h i^i dom g ) ) |` Pred ( R , ( dom h i^i dom g ) , a ) ) ) | 
						
							| 40 | 35 39 | eqeq12i |  |-  ( ( ( h |` ( dom g i^i dom h ) ) ` a ) = ( F ` ( ( h |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) <-> ( ( h |` ( dom h i^i dom g ) ) ` a ) = ( F ` ( ( h |` ( dom h i^i dom g ) ) |` Pred ( R , ( dom h i^i dom g ) , a ) ) ) ) | 
						
							| 41 | 30 40 | raleqbii |  |-  ( A. a e. ( dom g i^i dom h ) ( ( h |` ( dom g i^i dom h ) ) ` a ) = ( F ` ( ( h |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) <-> A. a e. ( dom h i^i dom g ) ( ( h |` ( dom h i^i dom g ) ) ` a ) = ( F ` ( ( h |` ( dom h i^i dom g ) ) |` Pred ( R , ( dom h i^i dom g ) , a ) ) ) ) | 
						
							| 42 | 34 41 | anbi12i |  |-  ( ( ( h |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) /\ A. a e. ( dom g i^i dom h ) ( ( h |` ( dom g i^i dom h ) ) ` a ) = ( F ` ( ( h |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) ) <-> ( ( h |` ( dom h i^i dom g ) ) Fn ( dom h i^i dom g ) /\ A. a e. ( dom h i^i dom g ) ( ( h |` ( dom h i^i dom g ) ) ` a ) = ( F ` ( ( h |` ( dom h i^i dom g ) ) |` Pred ( R , ( dom h i^i dom g ) , a ) ) ) ) ) | 
						
							| 43 | 29 42 | sylibr |  |-  ( ( g e. B /\ h e. B ) -> ( ( h |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) /\ A. a e. ( dom g i^i dom h ) ( ( h |` ( dom g i^i dom h ) ) ` a ) = ( F ` ( ( h |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) ) ) | 
						
							| 44 |  | wfr3g |  |-  ( ( ( R We ( dom g i^i dom h ) /\ R Se ( dom g i^i dom h ) ) /\ ( ( g |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) /\ A. a e. ( dom g i^i dom h ) ( ( g |` ( dom g i^i dom h ) ) ` a ) = ( F ` ( ( g |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) ) /\ ( ( h |` ( dom g i^i dom h ) ) Fn ( dom g i^i dom h ) /\ A. a e. ( dom g i^i dom h ) ( ( h |` ( dom g i^i dom h ) ) ` a ) = ( F ` ( ( h |` ( dom g i^i dom h ) ) |` Pred ( R , ( dom g i^i dom h ) , a ) ) ) ) ) -> ( g |` ( dom g i^i dom h ) ) = ( h |` ( dom g i^i dom h ) ) ) | 
						
							| 45 | 26 27 43 44 | syl3anc |  |-  ( ( g e. B /\ h e. B ) -> ( g |` ( dom g i^i dom h ) ) = ( h |` ( dom g i^i dom h ) ) ) | 
						
							| 46 | 45 | breqd |  |-  ( ( g e. B /\ h e. B ) -> ( x ( g |` ( dom g i^i dom h ) ) v <-> x ( h |` ( dom g i^i dom h ) ) v ) ) | 
						
							| 47 | 46 | biimprd |  |-  ( ( g e. B /\ h e. B ) -> ( x ( h |` ( dom g i^i dom h ) ) v -> x ( g |` ( dom g i^i dom h ) ) v ) ) | 
						
							| 48 | 3 | wfrlem2OLD |  |-  ( g e. B -> Fun g ) | 
						
							| 49 |  | funres |  |-  ( Fun g -> Fun ( g |` ( dom g i^i dom h ) ) ) | 
						
							| 50 |  | dffun2 |  |-  ( Fun ( g |` ( dom g i^i dom h ) ) <-> ( Rel ( g |` ( dom g i^i dom h ) ) /\ A. x A. u A. v ( ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( g |` ( dom g i^i dom h ) ) v ) -> u = v ) ) ) | 
						
							| 51 | 50 | simprbi |  |-  ( Fun ( g |` ( dom g i^i dom h ) ) -> A. x A. u A. v ( ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( g |` ( dom g i^i dom h ) ) v ) -> u = v ) ) | 
						
							| 52 |  | 2sp |  |-  ( A. u A. v ( ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( g |` ( dom g i^i dom h ) ) v ) -> u = v ) -> ( ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( g |` ( dom g i^i dom h ) ) v ) -> u = v ) ) | 
						
							| 53 | 52 | sps |  |-  ( A. x A. u A. v ( ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( g |` ( dom g i^i dom h ) ) v ) -> u = v ) -> ( ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( g |` ( dom g i^i dom h ) ) v ) -> u = v ) ) | 
						
							| 54 | 48 49 51 53 | 4syl |  |-  ( g e. B -> ( ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( g |` ( dom g i^i dom h ) ) v ) -> u = v ) ) | 
						
							| 55 | 54 | adantr |  |-  ( ( g e. B /\ h e. B ) -> ( ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( g |` ( dom g i^i dom h ) ) v ) -> u = v ) ) | 
						
							| 56 | 47 55 | sylan2d |  |-  ( ( g e. B /\ h e. B ) -> ( ( x ( g |` ( dom g i^i dom h ) ) u /\ x ( h |` ( dom g i^i dom h ) ) v ) -> u = v ) ) | 
						
							| 57 | 17 56 | syl5 |  |-  ( ( g e. B /\ h e. B ) -> ( ( x g u /\ x h v ) -> u = v ) ) |