Metamath Proof Explorer


Theorem wfrlem8

Description: Lemma for well-ordered recursion. Compute the prececessor class for an R minimal element of ( A \ dom F ) . (Contributed by Scott Fenton, 21-Apr-2011)

Ref Expression
Hypothesis wfrlem6.1
|- F = wrecs ( R , A , G )
Assertion wfrlem8
|- ( Pred ( R , ( A \ dom F ) , X ) = (/) <-> Pred ( R , A , X ) = Pred ( R , dom F , X ) )

Proof

Step Hyp Ref Expression
1 wfrlem6.1
 |-  F = wrecs ( R , A , G )
2 1 wfrdmss
 |-  dom F C_ A
3 predpredss
 |-  ( dom F C_ A -> Pred ( R , dom F , X ) C_ Pred ( R , A , X ) )
4 2 3 ax-mp
 |-  Pred ( R , dom F , X ) C_ Pred ( R , A , X )
5 4 biantru
 |-  ( Pred ( R , A , X ) C_ Pred ( R , dom F , X ) <-> ( Pred ( R , A , X ) C_ Pred ( R , dom F , X ) /\ Pred ( R , dom F , X ) C_ Pred ( R , A , X ) ) )
6 preddif
 |-  Pred ( R , ( A \ dom F ) , X ) = ( Pred ( R , A , X ) \ Pred ( R , dom F , X ) )
7 6 eqeq1i
 |-  ( Pred ( R , ( A \ dom F ) , X ) = (/) <-> ( Pred ( R , A , X ) \ Pred ( R , dom F , X ) ) = (/) )
8 ssdif0
 |-  ( Pred ( R , A , X ) C_ Pred ( R , dom F , X ) <-> ( Pred ( R , A , X ) \ Pred ( R , dom F , X ) ) = (/) )
9 7 8 bitr4i
 |-  ( Pred ( R , ( A \ dom F ) , X ) = (/) <-> Pred ( R , A , X ) C_ Pred ( R , dom F , X ) )
10 eqss
 |-  ( Pred ( R , A , X ) = Pred ( R , dom F , X ) <-> ( Pred ( R , A , X ) C_ Pred ( R , dom F , X ) /\ Pred ( R , dom F , X ) C_ Pred ( R , A , X ) ) )
11 5 9 10 3bitr4i
 |-  ( Pred ( R , ( A \ dom F ) , X ) = (/) <-> Pred ( R , A , X ) = Pred ( R , dom F , X ) )