| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wfrlem6OLD.1 |
|- F = wrecs ( R , A , G ) |
| 2 |
1
|
wfrdmssOLD |
|- dom F C_ A |
| 3 |
|
predpredss |
|- ( dom F C_ A -> Pred ( R , dom F , X ) C_ Pred ( R , A , X ) ) |
| 4 |
2 3
|
ax-mp |
|- Pred ( R , dom F , X ) C_ Pred ( R , A , X ) |
| 5 |
4
|
biantru |
|- ( Pred ( R , A , X ) C_ Pred ( R , dom F , X ) <-> ( Pred ( R , A , X ) C_ Pred ( R , dom F , X ) /\ Pred ( R , dom F , X ) C_ Pred ( R , A , X ) ) ) |
| 6 |
|
preddif |
|- Pred ( R , ( A \ dom F ) , X ) = ( Pred ( R , A , X ) \ Pred ( R , dom F , X ) ) |
| 7 |
6
|
eqeq1i |
|- ( Pred ( R , ( A \ dom F ) , X ) = (/) <-> ( Pred ( R , A , X ) \ Pred ( R , dom F , X ) ) = (/) ) |
| 8 |
|
ssdif0 |
|- ( Pred ( R , A , X ) C_ Pred ( R , dom F , X ) <-> ( Pred ( R , A , X ) \ Pred ( R , dom F , X ) ) = (/) ) |
| 9 |
7 8
|
bitr4i |
|- ( Pred ( R , ( A \ dom F ) , X ) = (/) <-> Pred ( R , A , X ) C_ Pred ( R , dom F , X ) ) |
| 10 |
|
eqss |
|- ( Pred ( R , A , X ) = Pred ( R , dom F , X ) <-> ( Pred ( R , A , X ) C_ Pred ( R , dom F , X ) /\ Pred ( R , dom F , X ) C_ Pred ( R , A , X ) ) ) |
| 11 |
5 9 10
|
3bitr4i |
|- ( Pred ( R , ( A \ dom F ) , X ) = (/) <-> Pred ( R , A , X ) = Pred ( R , dom F , X ) ) |