| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wfrfun.1 |  |-  F = wrecs ( R , A , G ) | 
						
							| 2 |  | wefr |  |-  ( R We A -> R Fr A ) | 
						
							| 3 | 2 | adantr |  |-  ( ( R We A /\ R Se A ) -> R Fr A ) | 
						
							| 4 |  | weso |  |-  ( R We A -> R Or A ) | 
						
							| 5 |  | sopo |  |-  ( R Or A -> R Po A ) | 
						
							| 6 | 4 5 | syl |  |-  ( R We A -> R Po A ) | 
						
							| 7 | 6 | adantr |  |-  ( ( R We A /\ R Se A ) -> R Po A ) | 
						
							| 8 |  | simpr |  |-  ( ( R We A /\ R Se A ) -> R Se A ) | 
						
							| 9 | 3 7 8 | 3jca |  |-  ( ( R We A /\ R Se A ) -> ( R Fr A /\ R Po A /\ R Se A ) ) | 
						
							| 10 |  | df-wrecs |  |-  wrecs ( R , A , G ) = frecs ( R , A , ( G o. 2nd ) ) | 
						
							| 11 | 1 10 | eqtri |  |-  F = frecs ( R , A , ( G o. 2nd ) ) | 
						
							| 12 | 11 | fprresex |  |-  ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. dom F ) -> ( F |` Pred ( R , A , X ) ) e. _V ) | 
						
							| 13 | 9 12 | sylan |  |-  ( ( ( R We A /\ R Se A ) /\ X e. dom F ) -> ( F |` Pred ( R , A , X ) ) e. _V ) |