Step |
Hyp |
Ref |
Expression |
1 |
|
wilth |
|- ( P e. Prime <-> ( P e. ( ZZ>= ` 2 ) /\ P || ( ( ! ` ( P - 1 ) ) + 1 ) ) ) |
2 |
|
eluz2nn |
|- ( P e. ( ZZ>= ` 2 ) -> P e. NN ) |
3 |
|
nnm1nn0 |
|- ( P e. NN -> ( P - 1 ) e. NN0 ) |
4 |
2 3
|
syl |
|- ( P e. ( ZZ>= ` 2 ) -> ( P - 1 ) e. NN0 ) |
5 |
4
|
faccld |
|- ( P e. ( ZZ>= ` 2 ) -> ( ! ` ( P - 1 ) ) e. NN ) |
6 |
5
|
nnzd |
|- ( P e. ( ZZ>= ` 2 ) -> ( ! ` ( P - 1 ) ) e. ZZ ) |
7 |
6
|
peano2zd |
|- ( P e. ( ZZ>= ` 2 ) -> ( ( ! ` ( P - 1 ) ) + 1 ) e. ZZ ) |
8 |
|
dvdsval3 |
|- ( ( P e. NN /\ ( ( ! ` ( P - 1 ) ) + 1 ) e. ZZ ) -> ( P || ( ( ! ` ( P - 1 ) ) + 1 ) <-> ( ( ( ! ` ( P - 1 ) ) + 1 ) mod P ) = 0 ) ) |
9 |
2 7 8
|
syl2anc |
|- ( P e. ( ZZ>= ` 2 ) -> ( P || ( ( ! ` ( P - 1 ) ) + 1 ) <-> ( ( ( ! ` ( P - 1 ) ) + 1 ) mod P ) = 0 ) ) |
10 |
9
|
biimpar |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( ( ( ! ` ( P - 1 ) ) + 1 ) mod P ) = 0 ) -> P || ( ( ! ` ( P - 1 ) ) + 1 ) ) |
11 |
5
|
nncnd |
|- ( P e. ( ZZ>= ` 2 ) -> ( ! ` ( P - 1 ) ) e. CC ) |
12 |
|
1cnd |
|- ( P e. ( ZZ>= ` 2 ) -> 1 e. CC ) |
13 |
11 12
|
jca |
|- ( P e. ( ZZ>= ` 2 ) -> ( ( ! ` ( P - 1 ) ) e. CC /\ 1 e. CC ) ) |
14 |
13
|
adantr |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( ( ( ! ` ( P - 1 ) ) + 1 ) mod P ) = 0 ) -> ( ( ! ` ( P - 1 ) ) e. CC /\ 1 e. CC ) ) |
15 |
|
subneg |
|- ( ( ( ! ` ( P - 1 ) ) e. CC /\ 1 e. CC ) -> ( ( ! ` ( P - 1 ) ) - -u 1 ) = ( ( ! ` ( P - 1 ) ) + 1 ) ) |
16 |
14 15
|
syl |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( ( ( ! ` ( P - 1 ) ) + 1 ) mod P ) = 0 ) -> ( ( ! ` ( P - 1 ) ) - -u 1 ) = ( ( ! ` ( P - 1 ) ) + 1 ) ) |
17 |
10 16
|
breqtrrd |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( ( ( ! ` ( P - 1 ) ) + 1 ) mod P ) = 0 ) -> P || ( ( ! ` ( P - 1 ) ) - -u 1 ) ) |
18 |
|
neg1z |
|- -u 1 e. ZZ |
19 |
18
|
a1i |
|- ( P e. ( ZZ>= ` 2 ) -> -u 1 e. ZZ ) |
20 |
2 6 19
|
3jca |
|- ( P e. ( ZZ>= ` 2 ) -> ( P e. NN /\ ( ! ` ( P - 1 ) ) e. ZZ /\ -u 1 e. ZZ ) ) |
21 |
20
|
adantr |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( ( ( ! ` ( P - 1 ) ) + 1 ) mod P ) = 0 ) -> ( P e. NN /\ ( ! ` ( P - 1 ) ) e. ZZ /\ -u 1 e. ZZ ) ) |
22 |
|
moddvds |
|- ( ( P e. NN /\ ( ! ` ( P - 1 ) ) e. ZZ /\ -u 1 e. ZZ ) -> ( ( ( ! ` ( P - 1 ) ) mod P ) = ( -u 1 mod P ) <-> P || ( ( ! ` ( P - 1 ) ) - -u 1 ) ) ) |
23 |
21 22
|
syl |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( ( ( ! ` ( P - 1 ) ) + 1 ) mod P ) = 0 ) -> ( ( ( ! ` ( P - 1 ) ) mod P ) = ( -u 1 mod P ) <-> P || ( ( ! ` ( P - 1 ) ) - -u 1 ) ) ) |
24 |
17 23
|
mpbird |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( ( ( ! ` ( P - 1 ) ) + 1 ) mod P ) = 0 ) -> ( ( ! ` ( P - 1 ) ) mod P ) = ( -u 1 mod P ) ) |
25 |
24
|
ex |
|- ( P e. ( ZZ>= ` 2 ) -> ( ( ( ( ! ` ( P - 1 ) ) + 1 ) mod P ) = 0 -> ( ( ! ` ( P - 1 ) ) mod P ) = ( -u 1 mod P ) ) ) |
26 |
9 25
|
sylbid |
|- ( P e. ( ZZ>= ` 2 ) -> ( P || ( ( ! ` ( P - 1 ) ) + 1 ) -> ( ( ! ` ( P - 1 ) ) mod P ) = ( -u 1 mod P ) ) ) |
27 |
26
|
imp |
|- ( ( P e. ( ZZ>= ` 2 ) /\ P || ( ( ! ` ( P - 1 ) ) + 1 ) ) -> ( ( ! ` ( P - 1 ) ) mod P ) = ( -u 1 mod P ) ) |
28 |
1 27
|
sylbi |
|- ( P e. Prime -> ( ( ! ` ( P - 1 ) ) mod P ) = ( -u 1 mod P ) ) |