Metamath Proof Explorer


Theorem winacard

Description: A weakly inaccessible cardinal is a cardinal. (Contributed by Mario Carneiro, 29-May-2014)

Ref Expression
Assertion winacard
|- ( A e. InaccW -> ( card ` A ) = A )

Proof

Step Hyp Ref Expression
1 elwina
 |-  ( A e. InaccW <-> ( A =/= (/) /\ ( cf ` A ) = A /\ A. x e. A E. y e. A x ~< y ) )
2 cardcf
 |-  ( card ` ( cf ` A ) ) = ( cf ` A )
3 fveq2
 |-  ( ( cf ` A ) = A -> ( card ` ( cf ` A ) ) = ( card ` A ) )
4 id
 |-  ( ( cf ` A ) = A -> ( cf ` A ) = A )
5 2 3 4 3eqtr3a
 |-  ( ( cf ` A ) = A -> ( card ` A ) = A )
6 5 3ad2ant2
 |-  ( ( A =/= (/) /\ ( cf ` A ) = A /\ A. x e. A E. y e. A x ~< y ) -> ( card ` A ) = A )
7 1 6 sylbi
 |-  ( A e. InaccW -> ( card ` A ) = A )