| Step |
Hyp |
Ref |
Expression |
| 1 |
|
winalim2 |
|- ( ( A e. InaccW /\ A =/= _om ) -> E. x ( ( aleph ` x ) = A /\ Lim x ) ) |
| 2 |
|
vex |
|- x e. _V |
| 3 |
|
limelon |
|- ( ( x e. _V /\ Lim x ) -> x e. On ) |
| 4 |
2 3
|
mpan |
|- ( Lim x -> x e. On ) |
| 5 |
|
alephle |
|- ( x e. On -> x C_ ( aleph ` x ) ) |
| 6 |
4 5
|
syl |
|- ( Lim x -> x C_ ( aleph ` x ) ) |
| 7 |
6
|
ad2antll |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( ( aleph ` x ) = A /\ Lim x ) ) -> x C_ ( aleph ` x ) ) |
| 8 |
|
simprl |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( ( aleph ` x ) = A /\ Lim x ) ) -> ( aleph ` x ) = A ) |
| 9 |
7 8
|
sseqtrd |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( ( aleph ` x ) = A /\ Lim x ) ) -> x C_ A ) |
| 10 |
8
|
fveq2d |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( ( aleph ` x ) = A /\ Lim x ) ) -> ( cf ` ( aleph ` x ) ) = ( cf ` A ) ) |
| 11 |
|
alephsing |
|- ( Lim x -> ( cf ` ( aleph ` x ) ) = ( cf ` x ) ) |
| 12 |
11
|
ad2antll |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( ( aleph ` x ) = A /\ Lim x ) ) -> ( cf ` ( aleph ` x ) ) = ( cf ` x ) ) |
| 13 |
10 12
|
eqtr3d |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( ( aleph ` x ) = A /\ Lim x ) ) -> ( cf ` A ) = ( cf ` x ) ) |
| 14 |
|
elwina |
|- ( A e. InaccW <-> ( A =/= (/) /\ ( cf ` A ) = A /\ A. y e. A E. z e. A y ~< z ) ) |
| 15 |
14
|
simp2bi |
|- ( A e. InaccW -> ( cf ` A ) = A ) |
| 16 |
15
|
ad2antrr |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( ( aleph ` x ) = A /\ Lim x ) ) -> ( cf ` A ) = A ) |
| 17 |
13 16
|
eqtr3d |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( ( aleph ` x ) = A /\ Lim x ) ) -> ( cf ` x ) = A ) |
| 18 |
|
cfle |
|- ( cf ` x ) C_ x |
| 19 |
17 18
|
eqsstrrdi |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( ( aleph ` x ) = A /\ Lim x ) ) -> A C_ x ) |
| 20 |
9 19
|
eqssd |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( ( aleph ` x ) = A /\ Lim x ) ) -> x = A ) |
| 21 |
20
|
fveq2d |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( ( aleph ` x ) = A /\ Lim x ) ) -> ( aleph ` x ) = ( aleph ` A ) ) |
| 22 |
21 8
|
eqtr3d |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( ( aleph ` x ) = A /\ Lim x ) ) -> ( aleph ` A ) = A ) |
| 23 |
1 22
|
exlimddv |
|- ( ( A e. InaccW /\ A =/= _om ) -> ( aleph ` A ) = A ) |