Step |
Hyp |
Ref |
Expression |
1 |
|
winainf |
|- ( A e. InaccW -> _om C_ A ) |
2 |
|
winacard |
|- ( A e. InaccW -> ( card ` A ) = A ) |
3 |
|
cardlim |
|- ( _om C_ ( card ` A ) <-> Lim ( card ` A ) ) |
4 |
|
sseq2 |
|- ( ( card ` A ) = A -> ( _om C_ ( card ` A ) <-> _om C_ A ) ) |
5 |
|
limeq |
|- ( ( card ` A ) = A -> ( Lim ( card ` A ) <-> Lim A ) ) |
6 |
4 5
|
bibi12d |
|- ( ( card ` A ) = A -> ( ( _om C_ ( card ` A ) <-> Lim ( card ` A ) ) <-> ( _om C_ A <-> Lim A ) ) ) |
7 |
3 6
|
mpbii |
|- ( ( card ` A ) = A -> ( _om C_ A <-> Lim A ) ) |
8 |
2 7
|
syl |
|- ( A e. InaccW -> ( _om C_ A <-> Lim A ) ) |
9 |
1 8
|
mpbid |
|- ( A e. InaccW -> Lim A ) |