| Step | Hyp | Ref | Expression | 
						
							| 1 |  | winainf |  |-  ( A e. InaccW -> _om C_ A ) | 
						
							| 2 |  | winacard |  |-  ( A e. InaccW -> ( card ` A ) = A ) | 
						
							| 3 |  | cardlim |  |-  ( _om C_ ( card ` A ) <-> Lim ( card ` A ) ) | 
						
							| 4 |  | sseq2 |  |-  ( ( card ` A ) = A -> ( _om C_ ( card ` A ) <-> _om C_ A ) ) | 
						
							| 5 |  | limeq |  |-  ( ( card ` A ) = A -> ( Lim ( card ` A ) <-> Lim A ) ) | 
						
							| 6 | 4 5 | bibi12d |  |-  ( ( card ` A ) = A -> ( ( _om C_ ( card ` A ) <-> Lim ( card ` A ) ) <-> ( _om C_ A <-> Lim A ) ) ) | 
						
							| 7 | 3 6 | mpbii |  |-  ( ( card ` A ) = A -> ( _om C_ A <-> Lim A ) ) | 
						
							| 8 | 2 7 | syl |  |-  ( A e. InaccW -> ( _om C_ A <-> Lim A ) ) | 
						
							| 9 | 1 8 | mpbid |  |-  ( A e. InaccW -> Lim A ) |