Step |
Hyp |
Ref |
Expression |
1 |
|
winacard |
|- ( A e. InaccW -> ( card ` A ) = A ) |
2 |
|
winainf |
|- ( A e. InaccW -> _om C_ A ) |
3 |
|
cardalephex |
|- ( _om C_ A -> ( ( card ` A ) = A <-> E. x e. On A = ( aleph ` x ) ) ) |
4 |
2 3
|
syl |
|- ( A e. InaccW -> ( ( card ` A ) = A <-> E. x e. On A = ( aleph ` x ) ) ) |
5 |
1 4
|
mpbid |
|- ( A e. InaccW -> E. x e. On A = ( aleph ` x ) ) |
6 |
5
|
adantr |
|- ( ( A e. InaccW /\ A =/= _om ) -> E. x e. On A = ( aleph ` x ) ) |
7 |
|
df-rex |
|- ( E. x e. On A = ( aleph ` x ) <-> E. x ( x e. On /\ A = ( aleph ` x ) ) ) |
8 |
|
simprr |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> A = ( aleph ` x ) ) |
9 |
8
|
eqcomd |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> ( aleph ` x ) = A ) |
10 |
|
simprl |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> x e. On ) |
11 |
|
onzsl |
|- ( x e. On <-> ( x = (/) \/ E. y e. On x = suc y \/ ( x e. _V /\ Lim x ) ) ) |
12 |
10 11
|
sylib |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> ( x = (/) \/ E. y e. On x = suc y \/ ( x e. _V /\ Lim x ) ) ) |
13 |
|
simplr |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> A =/= _om ) |
14 |
|
fveq2 |
|- ( x = (/) -> ( aleph ` x ) = ( aleph ` (/) ) ) |
15 |
|
aleph0 |
|- ( aleph ` (/) ) = _om |
16 |
14 15
|
eqtrdi |
|- ( x = (/) -> ( aleph ` x ) = _om ) |
17 |
|
eqtr |
|- ( ( A = ( aleph ` x ) /\ ( aleph ` x ) = _om ) -> A = _om ) |
18 |
16 17
|
sylan2 |
|- ( ( A = ( aleph ` x ) /\ x = (/) ) -> A = _om ) |
19 |
18
|
ex |
|- ( A = ( aleph ` x ) -> ( x = (/) -> A = _om ) ) |
20 |
19
|
necon3ad |
|- ( A = ( aleph ` x ) -> ( A =/= _om -> -. x = (/) ) ) |
21 |
8 13 20
|
sylc |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> -. x = (/) ) |
22 |
21
|
pm2.21d |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> ( x = (/) -> Lim x ) ) |
23 |
|
breq1 |
|- ( z = ( aleph ` y ) -> ( z ~< w <-> ( aleph ` y ) ~< w ) ) |
24 |
23
|
rexbidv |
|- ( z = ( aleph ` y ) -> ( E. w e. A z ~< w <-> E. w e. A ( aleph ` y ) ~< w ) ) |
25 |
|
elwina |
|- ( A e. InaccW <-> ( A =/= (/) /\ ( cf ` A ) = A /\ A. z e. A E. w e. A z ~< w ) ) |
26 |
25
|
simp3bi |
|- ( A e. InaccW -> A. z e. A E. w e. A z ~< w ) |
27 |
26
|
ad3antrrr |
|- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> A. z e. A E. w e. A z ~< w ) |
28 |
|
suceloni |
|- ( y e. On -> suc y e. On ) |
29 |
|
vex |
|- y e. _V |
30 |
29
|
sucid |
|- y e. suc y |
31 |
|
alephord2i |
|- ( suc y e. On -> ( y e. suc y -> ( aleph ` y ) e. ( aleph ` suc y ) ) ) |
32 |
28 30 31
|
mpisyl |
|- ( y e. On -> ( aleph ` y ) e. ( aleph ` suc y ) ) |
33 |
32
|
ad2antrl |
|- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> ( aleph ` y ) e. ( aleph ` suc y ) ) |
34 |
|
simplrr |
|- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> A = ( aleph ` x ) ) |
35 |
|
fveq2 |
|- ( x = suc y -> ( aleph ` x ) = ( aleph ` suc y ) ) |
36 |
35
|
ad2antll |
|- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> ( aleph ` x ) = ( aleph ` suc y ) ) |
37 |
34 36
|
eqtrd |
|- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> A = ( aleph ` suc y ) ) |
38 |
33 37
|
eleqtrrd |
|- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> ( aleph ` y ) e. A ) |
39 |
24 27 38
|
rspcdva |
|- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> E. w e. A ( aleph ` y ) ~< w ) |
40 |
39
|
expr |
|- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ y e. On ) -> ( x = suc y -> E. w e. A ( aleph ` y ) ~< w ) ) |
41 |
|
iscard |
|- ( ( card ` A ) = A <-> ( A e. On /\ A. w e. A w ~< A ) ) |
42 |
41
|
simprbi |
|- ( ( card ` A ) = A -> A. w e. A w ~< A ) |
43 |
|
rsp |
|- ( A. w e. A w ~< A -> ( w e. A -> w ~< A ) ) |
44 |
1 42 43
|
3syl |
|- ( A e. InaccW -> ( w e. A -> w ~< A ) ) |
45 |
44
|
ad3antrrr |
|- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> ( w e. A -> w ~< A ) ) |
46 |
37
|
breq2d |
|- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> ( w ~< A <-> w ~< ( aleph ` suc y ) ) ) |
47 |
45 46
|
sylibd |
|- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> ( w e. A -> w ~< ( aleph ` suc y ) ) ) |
48 |
|
alephnbtwn2 |
|- -. ( ( aleph ` y ) ~< w /\ w ~< ( aleph ` suc y ) ) |
49 |
|
pm3.21 |
|- ( w ~< ( aleph ` suc y ) -> ( ( aleph ` y ) ~< w -> ( ( aleph ` y ) ~< w /\ w ~< ( aleph ` suc y ) ) ) ) |
50 |
48 49
|
mtoi |
|- ( w ~< ( aleph ` suc y ) -> -. ( aleph ` y ) ~< w ) |
51 |
47 50
|
syl6 |
|- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> ( w e. A -> -. ( aleph ` y ) ~< w ) ) |
52 |
51
|
imp |
|- ( ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) /\ w e. A ) -> -. ( aleph ` y ) ~< w ) |
53 |
52
|
nrexdv |
|- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ ( y e. On /\ x = suc y ) ) -> -. E. w e. A ( aleph ` y ) ~< w ) |
54 |
53
|
expr |
|- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ y e. On ) -> ( x = suc y -> -. E. w e. A ( aleph ` y ) ~< w ) ) |
55 |
40 54
|
pm2.65d |
|- ( ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) /\ y e. On ) -> -. x = suc y ) |
56 |
55
|
nrexdv |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> -. E. y e. On x = suc y ) |
57 |
56
|
pm2.21d |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> ( E. y e. On x = suc y -> Lim x ) ) |
58 |
|
simpr |
|- ( ( x e. _V /\ Lim x ) -> Lim x ) |
59 |
58
|
a1i |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> ( ( x e. _V /\ Lim x ) -> Lim x ) ) |
60 |
22 57 59
|
3jaod |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> ( ( x = (/) \/ E. y e. On x = suc y \/ ( x e. _V /\ Lim x ) ) -> Lim x ) ) |
61 |
12 60
|
mpd |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> Lim x ) |
62 |
9 61
|
jca |
|- ( ( ( A e. InaccW /\ A =/= _om ) /\ ( x e. On /\ A = ( aleph ` x ) ) ) -> ( ( aleph ` x ) = A /\ Lim x ) ) |
63 |
62
|
ex |
|- ( ( A e. InaccW /\ A =/= _om ) -> ( ( x e. On /\ A = ( aleph ` x ) ) -> ( ( aleph ` x ) = A /\ Lim x ) ) ) |
64 |
63
|
eximdv |
|- ( ( A e. InaccW /\ A =/= _om ) -> ( E. x ( x e. On /\ A = ( aleph ` x ) ) -> E. x ( ( aleph ` x ) = A /\ Lim x ) ) ) |
65 |
7 64
|
syl5bi |
|- ( ( A e. InaccW /\ A =/= _om ) -> ( E. x e. On A = ( aleph ` x ) -> E. x ( ( aleph ` x ) = A /\ Lim x ) ) ) |
66 |
6 65
|
mpd |
|- ( ( A e. InaccW /\ A =/= _om ) -> E. x ( ( aleph ` x ) = A /\ Lim x ) ) |