Metamath Proof Explorer


Theorem winaon

Description: A weakly inaccessible cardinal is an ordinal. (Contributed by Mario Carneiro, 29-May-2014)

Ref Expression
Assertion winaon
|- ( A e. InaccW -> A e. On )

Proof

Step Hyp Ref Expression
1 elwina
 |-  ( A e. InaccW <-> ( A =/= (/) /\ ( cf ` A ) = A /\ A. x e. A E. y e. A x ~< y ) )
2 cfon
 |-  ( cf ` A ) e. On
3 eleq1
 |-  ( ( cf ` A ) = A -> ( ( cf ` A ) e. On <-> A e. On ) )
4 2 3 mpbii
 |-  ( ( cf ` A ) = A -> A e. On )
5 4 3ad2ant2
 |-  ( ( A =/= (/) /\ ( cf ` A ) = A /\ A. x e. A E. y e. A x ~< y ) -> A e. On )
6 1 5 sylbi
 |-  ( A e. InaccW -> A e. On )