Step |
Hyp |
Ref |
Expression |
1 |
|
wksfval.v |
|- V = ( Vtx ` G ) |
2 |
|
wksfval.i |
|- I = ( iEdg ` G ) |
3 |
|
df-wlks |
|- Walks = ( g e. _V |-> { <. f , p >. | ( f e. Word dom ( iEdg ` g ) /\ p : ( 0 ... ( # ` f ) ) --> ( Vtx ` g ) /\ A. k e. ( 0 ..^ ( # ` f ) ) if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( ( iEdg ` g ) ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( ( iEdg ` g ) ` ( f ` k ) ) ) ) } ) |
4 |
|
fveq2 |
|- ( g = G -> ( iEdg ` g ) = ( iEdg ` G ) ) |
5 |
4 2
|
eqtr4di |
|- ( g = G -> ( iEdg ` g ) = I ) |
6 |
5
|
dmeqd |
|- ( g = G -> dom ( iEdg ` g ) = dom I ) |
7 |
|
wrdeq |
|- ( dom ( iEdg ` g ) = dom I -> Word dom ( iEdg ` g ) = Word dom I ) |
8 |
6 7
|
syl |
|- ( g = G -> Word dom ( iEdg ` g ) = Word dom I ) |
9 |
8
|
eleq2d |
|- ( g = G -> ( f e. Word dom ( iEdg ` g ) <-> f e. Word dom I ) ) |
10 |
|
fveq2 |
|- ( g = G -> ( Vtx ` g ) = ( Vtx ` G ) ) |
11 |
10 1
|
eqtr4di |
|- ( g = G -> ( Vtx ` g ) = V ) |
12 |
11
|
feq3d |
|- ( g = G -> ( p : ( 0 ... ( # ` f ) ) --> ( Vtx ` g ) <-> p : ( 0 ... ( # ` f ) ) --> V ) ) |
13 |
5
|
fveq1d |
|- ( g = G -> ( ( iEdg ` g ) ` ( f ` k ) ) = ( I ` ( f ` k ) ) ) |
14 |
13
|
eqeq1d |
|- ( g = G -> ( ( ( iEdg ` g ) ` ( f ` k ) ) = { ( p ` k ) } <-> ( I ` ( f ` k ) ) = { ( p ` k ) } ) ) |
15 |
13
|
sseq2d |
|- ( g = G -> ( { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( ( iEdg ` g ) ` ( f ` k ) ) <-> { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( I ` ( f ` k ) ) ) ) |
16 |
14 15
|
ifpbi23d |
|- ( g = G -> ( if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( ( iEdg ` g ) ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( ( iEdg ` g ) ` ( f ` k ) ) ) <-> if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( I ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( I ` ( f ` k ) ) ) ) ) |
17 |
16
|
ralbidv |
|- ( g = G -> ( A. k e. ( 0 ..^ ( # ` f ) ) if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( ( iEdg ` g ) ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( ( iEdg ` g ) ` ( f ` k ) ) ) <-> A. k e. ( 0 ..^ ( # ` f ) ) if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( I ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( I ` ( f ` k ) ) ) ) ) |
18 |
9 12 17
|
3anbi123d |
|- ( g = G -> ( ( f e. Word dom ( iEdg ` g ) /\ p : ( 0 ... ( # ` f ) ) --> ( Vtx ` g ) /\ A. k e. ( 0 ..^ ( # ` f ) ) if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( ( iEdg ` g ) ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( ( iEdg ` g ) ` ( f ` k ) ) ) ) <-> ( f e. Word dom I /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( I ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( I ` ( f ` k ) ) ) ) ) ) |
19 |
18
|
opabbidv |
|- ( g = G -> { <. f , p >. | ( f e. Word dom ( iEdg ` g ) /\ p : ( 0 ... ( # ` f ) ) --> ( Vtx ` g ) /\ A. k e. ( 0 ..^ ( # ` f ) ) if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( ( iEdg ` g ) ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( ( iEdg ` g ) ` ( f ` k ) ) ) ) } = { <. f , p >. | ( f e. Word dom I /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( I ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( I ` ( f ` k ) ) ) ) } ) |
20 |
|
elex |
|- ( G e. W -> G e. _V ) |
21 |
|
3anass |
|- ( ( f e. Word dom I /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( I ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( I ` ( f ` k ) ) ) ) <-> ( f e. Word dom I /\ ( p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( I ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( I ` ( f ` k ) ) ) ) ) ) |
22 |
21
|
opabbii |
|- { <. f , p >. | ( f e. Word dom I /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( I ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( I ` ( f ` k ) ) ) ) } = { <. f , p >. | ( f e. Word dom I /\ ( p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( I ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( I ` ( f ` k ) ) ) ) ) } |
23 |
2
|
fvexi |
|- I e. _V |
24 |
23
|
dmex |
|- dom I e. _V |
25 |
|
wrdexg |
|- ( dom I e. _V -> Word dom I e. _V ) |
26 |
24 25
|
mp1i |
|- ( G e. W -> Word dom I e. _V ) |
27 |
|
ovex |
|- ( 0 ... ( # ` f ) ) e. _V |
28 |
1
|
fvexi |
|- V e. _V |
29 |
28
|
a1i |
|- ( ( G e. W /\ f e. Word dom I ) -> V e. _V ) |
30 |
|
mapex |
|- ( ( ( 0 ... ( # ` f ) ) e. _V /\ V e. _V ) -> { p | p : ( 0 ... ( # ` f ) ) --> V } e. _V ) |
31 |
27 29 30
|
sylancr |
|- ( ( G e. W /\ f e. Word dom I ) -> { p | p : ( 0 ... ( # ` f ) ) --> V } e. _V ) |
32 |
|
simpl |
|- ( ( p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( I ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( I ` ( f ` k ) ) ) ) -> p : ( 0 ... ( # ` f ) ) --> V ) |
33 |
32
|
ss2abi |
|- { p | ( p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( I ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( I ` ( f ` k ) ) ) ) } C_ { p | p : ( 0 ... ( # ` f ) ) --> V } |
34 |
33
|
a1i |
|- ( ( G e. W /\ f e. Word dom I ) -> { p | ( p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( I ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( I ` ( f ` k ) ) ) ) } C_ { p | p : ( 0 ... ( # ` f ) ) --> V } ) |
35 |
31 34
|
ssexd |
|- ( ( G e. W /\ f e. Word dom I ) -> { p | ( p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( I ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( I ` ( f ` k ) ) ) ) } e. _V ) |
36 |
26 35
|
opabex3d |
|- ( G e. W -> { <. f , p >. | ( f e. Word dom I /\ ( p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( I ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( I ` ( f ` k ) ) ) ) ) } e. _V ) |
37 |
22 36
|
eqeltrid |
|- ( G e. W -> { <. f , p >. | ( f e. Word dom I /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( I ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( I ` ( f ` k ) ) ) ) } e. _V ) |
38 |
3 19 20 37
|
fvmptd3 |
|- ( G e. W -> ( Walks ` G ) = { <. f , p >. | ( f e. Word dom I /\ p : ( 0 ... ( # ` f ) ) --> V /\ A. k e. ( 0 ..^ ( # ` f ) ) if- ( ( p ` k ) = ( p ` ( k + 1 ) ) , ( I ` ( f ` k ) ) = { ( p ` k ) } , { ( p ` k ) , ( p ` ( k + 1 ) ) } C_ ( I ` ( f ` k ) ) ) ) } ) |