| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 |  |-  ( A = B -> ( P ` A ) = ( P ` B ) ) | 
						
							| 2 |  | fvoveq1 |  |-  ( A = B -> ( P ` ( A + 1 ) ) = ( P ` ( B + 1 ) ) ) | 
						
							| 3 | 1 2 | eqeq12d |  |-  ( A = B -> ( ( P ` A ) = ( P ` ( A + 1 ) ) <-> ( P ` B ) = ( P ` ( B + 1 ) ) ) ) | 
						
							| 4 |  | 2fveq3 |  |-  ( A = B -> ( I ` ( F ` A ) ) = ( I ` ( F ` B ) ) ) | 
						
							| 5 | 1 | sneqd |  |-  ( A = B -> { ( P ` A ) } = { ( P ` B ) } ) | 
						
							| 6 | 4 5 | eqeq12d |  |-  ( A = B -> ( ( I ` ( F ` A ) ) = { ( P ` A ) } <-> ( I ` ( F ` B ) ) = { ( P ` B ) } ) ) | 
						
							| 7 | 1 2 | preq12d |  |-  ( A = B -> { ( P ` A ) , ( P ` ( A + 1 ) ) } = { ( P ` B ) , ( P ` ( B + 1 ) ) } ) | 
						
							| 8 | 7 4 | sseq12d |  |-  ( A = B -> ( { ( P ` A ) , ( P ` ( A + 1 ) ) } C_ ( I ` ( F ` A ) ) <-> { ( P ` B ) , ( P ` ( B + 1 ) ) } C_ ( I ` ( F ` B ) ) ) ) | 
						
							| 9 | 3 6 8 | ifpbi123d |  |-  ( A = B -> ( if- ( ( P ` A ) = ( P ` ( A + 1 ) ) , ( I ` ( F ` A ) ) = { ( P ` A ) } , { ( P ` A ) , ( P ` ( A + 1 ) ) } C_ ( I ` ( F ` A ) ) ) <-> if- ( ( P ` B ) = ( P ` ( B + 1 ) ) , ( I ` ( F ` B ) ) = { ( P ` B ) } , { ( P ` B ) , ( P ` ( B + 1 ) ) } C_ ( I ` ( F ` B ) ) ) ) ) |