Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( A = B -> ( P ` A ) = ( P ` B ) ) |
2 |
|
fvoveq1 |
|- ( A = B -> ( P ` ( A + 1 ) ) = ( P ` ( B + 1 ) ) ) |
3 |
1 2
|
eqeq12d |
|- ( A = B -> ( ( P ` A ) = ( P ` ( A + 1 ) ) <-> ( P ` B ) = ( P ` ( B + 1 ) ) ) ) |
4 |
|
2fveq3 |
|- ( A = B -> ( I ` ( F ` A ) ) = ( I ` ( F ` B ) ) ) |
5 |
1
|
sneqd |
|- ( A = B -> { ( P ` A ) } = { ( P ` B ) } ) |
6 |
4 5
|
eqeq12d |
|- ( A = B -> ( ( I ` ( F ` A ) ) = { ( P ` A ) } <-> ( I ` ( F ` B ) ) = { ( P ` B ) } ) ) |
7 |
1 2
|
preq12d |
|- ( A = B -> { ( P ` A ) , ( P ` ( A + 1 ) ) } = { ( P ` B ) , ( P ` ( B + 1 ) ) } ) |
8 |
7 4
|
sseq12d |
|- ( A = B -> ( { ( P ` A ) , ( P ` ( A + 1 ) ) } C_ ( I ` ( F ` A ) ) <-> { ( P ` B ) , ( P ` ( B + 1 ) ) } C_ ( I ` ( F ` B ) ) ) ) |
9 |
3 6 8
|
ifpbi123d |
|- ( A = B -> ( if- ( ( P ` A ) = ( P ` ( A + 1 ) ) , ( I ` ( F ` A ) ) = { ( P ` A ) } , { ( P ` A ) , ( P ` ( A + 1 ) ) } C_ ( I ` ( F ` A ) ) ) <-> if- ( ( P ` B ) = ( P ` ( B + 1 ) ) , ( I ` ( F ` B ) ) = { ( P ` B ) } , { ( P ` B ) , ( P ` ( B + 1 ) ) } C_ ( I ` ( F ` B ) ) ) ) ) |