Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( A = B -> ( P ` A ) = ( P ` B ) ) |
2 |
1
|
adantr |
|- ( ( A = B /\ ( A + 1 ) = C ) -> ( P ` A ) = ( P ` B ) ) |
3 |
|
fveq2 |
|- ( ( A + 1 ) = C -> ( P ` ( A + 1 ) ) = ( P ` C ) ) |
4 |
3
|
adantl |
|- ( ( A = B /\ ( A + 1 ) = C ) -> ( P ` ( A + 1 ) ) = ( P ` C ) ) |
5 |
2 4
|
eqeq12d |
|- ( ( A = B /\ ( A + 1 ) = C ) -> ( ( P ` A ) = ( P ` ( A + 1 ) ) <-> ( P ` B ) = ( P ` C ) ) ) |
6 |
|
2fveq3 |
|- ( A = B -> ( I ` ( F ` A ) ) = ( I ` ( F ` B ) ) ) |
7 |
1
|
sneqd |
|- ( A = B -> { ( P ` A ) } = { ( P ` B ) } ) |
8 |
6 7
|
eqeq12d |
|- ( A = B -> ( ( I ` ( F ` A ) ) = { ( P ` A ) } <-> ( I ` ( F ` B ) ) = { ( P ` B ) } ) ) |
9 |
8
|
adantr |
|- ( ( A = B /\ ( A + 1 ) = C ) -> ( ( I ` ( F ` A ) ) = { ( P ` A ) } <-> ( I ` ( F ` B ) ) = { ( P ` B ) } ) ) |
10 |
2 4
|
preq12d |
|- ( ( A = B /\ ( A + 1 ) = C ) -> { ( P ` A ) , ( P ` ( A + 1 ) ) } = { ( P ` B ) , ( P ` C ) } ) |
11 |
6
|
adantr |
|- ( ( A = B /\ ( A + 1 ) = C ) -> ( I ` ( F ` A ) ) = ( I ` ( F ` B ) ) ) |
12 |
10 11
|
sseq12d |
|- ( ( A = B /\ ( A + 1 ) = C ) -> ( { ( P ` A ) , ( P ` ( A + 1 ) ) } C_ ( I ` ( F ` A ) ) <-> { ( P ` B ) , ( P ` C ) } C_ ( I ` ( F ` B ) ) ) ) |
13 |
5 9 12
|
ifpbi123d |
|- ( ( A = B /\ ( A + 1 ) = C ) -> ( if- ( ( P ` A ) = ( P ` ( A + 1 ) ) , ( I ` ( F ` A ) ) = { ( P ` A ) } , { ( P ` A ) , ( P ` ( A + 1 ) ) } C_ ( I ` ( F ` A ) ) ) <-> if- ( ( P ` B ) = ( P ` C ) , ( I ` ( F ` B ) ) = { ( P ` B ) } , { ( P ` B ) , ( P ` C ) } C_ ( I ` ( F ` B ) ) ) ) ) |