Description: The class of walks is a set. (Contributed by AV, 15-Jan-2021) (Proof shortened by SN, 11-Dec-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | wksv | |- { <. f , p >. | f ( Walks ` G ) p } e. _V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex | |- ( Walks ` G ) e. _V |
|
2 | opabss | |- { <. f , p >. | f ( Walks ` G ) p } C_ ( Walks ` G ) |
|
3 | 1 2 | ssexi | |- { <. f , p >. | f ( Walks ` G ) p } e. _V |