| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvex |  |-  ( Vtx ` G ) e. _V | 
						
							| 2 |  | fvex |  |-  ( iEdg ` G ) e. _V | 
						
							| 3 | 2 | dmex |  |-  dom ( iEdg ` G ) e. _V | 
						
							| 4 |  | wrdexg |  |-  ( dom ( iEdg ` G ) e. _V -> Word dom ( iEdg ` G ) e. _V ) | 
						
							| 5 | 3 4 | mp1i |  |-  ( ( Vtx ` G ) e. _V -> Word dom ( iEdg ` G ) e. _V ) | 
						
							| 6 |  | wrdexg |  |-  ( ( Vtx ` G ) e. _V -> Word ( Vtx ` G ) e. _V ) | 
						
							| 7 |  | eqid |  |-  ( iEdg ` G ) = ( iEdg ` G ) | 
						
							| 8 | 7 | wlkf |  |-  ( f ( Walks ` G ) p -> f e. Word dom ( iEdg ` G ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ( Vtx ` G ) e. _V /\ f ( Walks ` G ) p ) -> f e. Word dom ( iEdg ` G ) ) | 
						
							| 10 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 11 | 10 | wlkpwrd |  |-  ( f ( Walks ` G ) p -> p e. Word ( Vtx ` G ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( ( Vtx ` G ) e. _V /\ f ( Walks ` G ) p ) -> p e. Word ( Vtx ` G ) ) | 
						
							| 13 | 5 6 9 12 | opabex2 |  |-  ( ( Vtx ` G ) e. _V -> { <. f , p >. | f ( Walks ` G ) p } e. _V ) | 
						
							| 14 | 1 13 | ax-mp |  |-  { <. f , p >. | f ( Walks ` G ) p } e. _V |