Metamath Proof Explorer


Theorem wlk0prc

Description: There is no walk in a null graph (a class without vertices). (Contributed by Alexander van der Vekens, 2-Sep-2018) (Revised by AV, 5-Mar-2021)

Ref Expression
Assertion wlk0prc
|- ( ( S e/ _V /\ ( Vtx ` S ) = ( Vtx ` G ) ) -> ( Walks ` G ) = (/) )

Proof

Step Hyp Ref Expression
1 eqcom
 |-  ( ( Vtx ` S ) = ( Vtx ` G ) <-> ( Vtx ` G ) = ( Vtx ` S ) )
2 1 biimpi
 |-  ( ( Vtx ` S ) = ( Vtx ` G ) -> ( Vtx ` G ) = ( Vtx ` S ) )
3 vtxvalprc
 |-  ( S e/ _V -> ( Vtx ` S ) = (/) )
4 2 3 sylan9eqr
 |-  ( ( S e/ _V /\ ( Vtx ` S ) = ( Vtx ` G ) ) -> ( Vtx ` G ) = (/) )
5 g0wlk0
 |-  ( ( Vtx ` G ) = (/) -> ( Walks ` G ) = (/) )
6 4 5 syl
 |-  ( ( S e/ _V /\ ( Vtx ` S ) = ( Vtx ` G ) ) -> ( Walks ` G ) = (/) )