Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
2 |
1
|
wlkf |
|- ( F ( Walks ` G ) P -> F e. Word dom ( iEdg ` G ) ) |
3 |
1
|
wlk1walk |
|- ( F ( Walks ` G ) P -> A. k e. ( 1 ..^ ( # ` F ) ) 1 <_ ( # ` ( ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) i^i ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) |
4 |
|
wlkv |
|- ( F ( Walks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) |
5 |
4
|
simp1d |
|- ( F ( Walks ` G ) P -> G e. _V ) |
6 |
|
1nn0 |
|- 1 e. NN0 |
7 |
|
nn0xnn0 |
|- ( 1 e. NN0 -> 1 e. NN0* ) |
8 |
6 7
|
mp1i |
|- ( F ( Walks ` G ) P -> 1 e. NN0* ) |
9 |
1
|
isewlk |
|- ( ( G e. _V /\ 1 e. NN0* /\ F e. Word dom ( iEdg ` G ) ) -> ( F e. ( G EdgWalks 1 ) <-> ( F e. Word dom ( iEdg ` G ) /\ A. k e. ( 1 ..^ ( # ` F ) ) 1 <_ ( # ` ( ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) i^i ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) ) ) |
10 |
5 8 2 9
|
syl3anc |
|- ( F ( Walks ` G ) P -> ( F e. ( G EdgWalks 1 ) <-> ( F e. Word dom ( iEdg ` G ) /\ A. k e. ( 1 ..^ ( # ` F ) ) 1 <_ ( # ` ( ( ( iEdg ` G ) ` ( F ` ( k - 1 ) ) ) i^i ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) ) ) |
11 |
2 3 10
|
mpbir2and |
|- ( F ( Walks ` G ) P -> F e. ( G EdgWalks 1 ) ) |