Step |
Hyp |
Ref |
Expression |
1 |
|
wlk2v2e.i |
|- I = <" { X , Y } "> |
2 |
|
wlk2v2e.f |
|- F = <" 0 0 "> |
3 |
|
wlk2v2e.x |
|- X e. _V |
4 |
|
wlk2v2e.y |
|- Y e. _V |
5 |
|
wlk2v2e.p |
|- P = <" X Y X "> |
6 |
|
wlk2v2e.g |
|- G = <. { X , Y } , I >. |
7 |
1
|
opeq2i |
|- <. { X , Y } , I >. = <. { X , Y } , <" { X , Y } "> >. |
8 |
6 7
|
eqtri |
|- G = <. { X , Y } , <" { X , Y } "> >. |
9 |
|
uspgr2v1e2w |
|- ( ( X e. _V /\ Y e. _V ) -> <. { X , Y } , <" { X , Y } "> >. e. USPGraph ) |
10 |
3 4 9
|
mp2an |
|- <. { X , Y } , <" { X , Y } "> >. e. USPGraph |
11 |
8 10
|
eqeltri |
|- G e. USPGraph |
12 |
|
uspgrupgr |
|- ( G e. USPGraph -> G e. UPGraph ) |
13 |
11 12
|
ax-mp |
|- G e. UPGraph |
14 |
1 2
|
wlk2v2elem1 |
|- F e. Word dom I |
15 |
3
|
prid1 |
|- X e. { X , Y } |
16 |
4
|
prid2 |
|- Y e. { X , Y } |
17 |
|
s3cl |
|- ( ( X e. { X , Y } /\ Y e. { X , Y } /\ X e. { X , Y } ) -> <" X Y X "> e. Word { X , Y } ) |
18 |
15 16 15 17
|
mp3an |
|- <" X Y X "> e. Word { X , Y } |
19 |
5 18
|
eqeltri |
|- P e. Word { X , Y } |
20 |
|
wrdf |
|- ( P e. Word { X , Y } -> P : ( 0 ..^ ( # ` P ) ) --> { X , Y } ) |
21 |
19 20
|
ax-mp |
|- P : ( 0 ..^ ( # ` P ) ) --> { X , Y } |
22 |
5
|
fveq2i |
|- ( # ` P ) = ( # ` <" X Y X "> ) |
23 |
|
s3len |
|- ( # ` <" X Y X "> ) = 3 |
24 |
22 23
|
eqtr2i |
|- 3 = ( # ` P ) |
25 |
24
|
oveq2i |
|- ( 0 ..^ 3 ) = ( 0 ..^ ( # ` P ) ) |
26 |
25
|
feq2i |
|- ( P : ( 0 ..^ 3 ) --> { X , Y } <-> P : ( 0 ..^ ( # ` P ) ) --> { X , Y } ) |
27 |
21 26
|
mpbir |
|- P : ( 0 ..^ 3 ) --> { X , Y } |
28 |
2
|
fveq2i |
|- ( # ` F ) = ( # ` <" 0 0 "> ) |
29 |
|
s2len |
|- ( # ` <" 0 0 "> ) = 2 |
30 |
28 29
|
eqtri |
|- ( # ` F ) = 2 |
31 |
30
|
oveq2i |
|- ( 0 ... ( # ` F ) ) = ( 0 ... 2 ) |
32 |
|
3z |
|- 3 e. ZZ |
33 |
|
fzoval |
|- ( 3 e. ZZ -> ( 0 ..^ 3 ) = ( 0 ... ( 3 - 1 ) ) ) |
34 |
32 33
|
ax-mp |
|- ( 0 ..^ 3 ) = ( 0 ... ( 3 - 1 ) ) |
35 |
|
3m1e2 |
|- ( 3 - 1 ) = 2 |
36 |
35
|
oveq2i |
|- ( 0 ... ( 3 - 1 ) ) = ( 0 ... 2 ) |
37 |
34 36
|
eqtr2i |
|- ( 0 ... 2 ) = ( 0 ..^ 3 ) |
38 |
31 37
|
eqtri |
|- ( 0 ... ( # ` F ) ) = ( 0 ..^ 3 ) |
39 |
38
|
feq2i |
|- ( P : ( 0 ... ( # ` F ) ) --> { X , Y } <-> P : ( 0 ..^ 3 ) --> { X , Y } ) |
40 |
27 39
|
mpbir |
|- P : ( 0 ... ( # ` F ) ) --> { X , Y } |
41 |
1 2 3 4 5
|
wlk2v2elem2 |
|- A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } |
42 |
14 40 41
|
3pm3.2i |
|- ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> { X , Y } /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) |
43 |
6
|
fveq2i |
|- ( Vtx ` G ) = ( Vtx ` <. { X , Y } , I >. ) |
44 |
|
prex |
|- { X , Y } e. _V |
45 |
|
s1cli |
|- <" { X , Y } "> e. Word _V |
46 |
1 45
|
eqeltri |
|- I e. Word _V |
47 |
|
opvtxfv |
|- ( ( { X , Y } e. _V /\ I e. Word _V ) -> ( Vtx ` <. { X , Y } , I >. ) = { X , Y } ) |
48 |
44 46 47
|
mp2an |
|- ( Vtx ` <. { X , Y } , I >. ) = { X , Y } |
49 |
43 48
|
eqtr2i |
|- { X , Y } = ( Vtx ` G ) |
50 |
6
|
fveq2i |
|- ( iEdg ` G ) = ( iEdg ` <. { X , Y } , I >. ) |
51 |
|
opiedgfv |
|- ( ( { X , Y } e. _V /\ I e. Word _V ) -> ( iEdg ` <. { X , Y } , I >. ) = I ) |
52 |
44 46 51
|
mp2an |
|- ( iEdg ` <. { X , Y } , I >. ) = I |
53 |
50 52
|
eqtr2i |
|- I = ( iEdg ` G ) |
54 |
49 53
|
upgriswlk |
|- ( G e. UPGraph -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> { X , Y } /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
55 |
42 54
|
mpbiri |
|- ( G e. UPGraph -> F ( Walks ` G ) P ) |
56 |
13 55
|
ax-mp |
|- F ( Walks ` G ) P |