Step |
Hyp |
Ref |
Expression |
1 |
|
wlk2v2e.i |
|- I = <" { X , Y } "> |
2 |
|
wlk2v2e.f |
|- F = <" 0 0 "> |
3 |
|
wlk2v2e.x |
|- X e. _V |
4 |
|
wlk2v2e.y |
|- Y e. _V |
5 |
|
wlk2v2e.p |
|- P = <" X Y X "> |
6 |
2
|
fveq1i |
|- ( F ` 0 ) = ( <" 0 0 "> ` 0 ) |
7 |
|
0z |
|- 0 e. ZZ |
8 |
|
s2fv0 |
|- ( 0 e. ZZ -> ( <" 0 0 "> ` 0 ) = 0 ) |
9 |
7 8
|
ax-mp |
|- ( <" 0 0 "> ` 0 ) = 0 |
10 |
6 9
|
eqtri |
|- ( F ` 0 ) = 0 |
11 |
10
|
fveq2i |
|- ( I ` ( F ` 0 ) ) = ( I ` 0 ) |
12 |
1
|
fveq1i |
|- ( I ` 0 ) = ( <" { X , Y } "> ` 0 ) |
13 |
|
prex |
|- { X , Y } e. _V |
14 |
|
s1fv |
|- ( { X , Y } e. _V -> ( <" { X , Y } "> ` 0 ) = { X , Y } ) |
15 |
13 14
|
ax-mp |
|- ( <" { X , Y } "> ` 0 ) = { X , Y } |
16 |
12 15
|
eqtri |
|- ( I ` 0 ) = { X , Y } |
17 |
5
|
fveq1i |
|- ( P ` 0 ) = ( <" X Y X "> ` 0 ) |
18 |
|
s3fv0 |
|- ( X e. _V -> ( <" X Y X "> ` 0 ) = X ) |
19 |
3 18
|
ax-mp |
|- ( <" X Y X "> ` 0 ) = X |
20 |
17 19
|
eqtri |
|- ( P ` 0 ) = X |
21 |
5
|
fveq1i |
|- ( P ` 1 ) = ( <" X Y X "> ` 1 ) |
22 |
|
s3fv1 |
|- ( Y e. _V -> ( <" X Y X "> ` 1 ) = Y ) |
23 |
4 22
|
ax-mp |
|- ( <" X Y X "> ` 1 ) = Y |
24 |
21 23
|
eqtri |
|- ( P ` 1 ) = Y |
25 |
20 24
|
preq12i |
|- { ( P ` 0 ) , ( P ` 1 ) } = { X , Y } |
26 |
25
|
eqcomi |
|- { X , Y } = { ( P ` 0 ) , ( P ` 1 ) } |
27 |
11 16 26
|
3eqtri |
|- ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } |
28 |
2
|
fveq1i |
|- ( F ` 1 ) = ( <" 0 0 "> ` 1 ) |
29 |
|
s2fv1 |
|- ( 0 e. ZZ -> ( <" 0 0 "> ` 1 ) = 0 ) |
30 |
7 29
|
ax-mp |
|- ( <" 0 0 "> ` 1 ) = 0 |
31 |
28 30
|
eqtri |
|- ( F ` 1 ) = 0 |
32 |
31
|
fveq2i |
|- ( I ` ( F ` 1 ) ) = ( I ` 0 ) |
33 |
|
prcom |
|- { X , Y } = { Y , X } |
34 |
5
|
fveq1i |
|- ( P ` 2 ) = ( <" X Y X "> ` 2 ) |
35 |
|
s3fv2 |
|- ( X e. _V -> ( <" X Y X "> ` 2 ) = X ) |
36 |
3 35
|
ax-mp |
|- ( <" X Y X "> ` 2 ) = X |
37 |
34 36
|
eqtri |
|- ( P ` 2 ) = X |
38 |
24 37
|
preq12i |
|- { ( P ` 1 ) , ( P ` 2 ) } = { Y , X } |
39 |
38
|
eqcomi |
|- { Y , X } = { ( P ` 1 ) , ( P ` 2 ) } |
40 |
33 39
|
eqtri |
|- { X , Y } = { ( P ` 1 ) , ( P ` 2 ) } |
41 |
32 16 40
|
3eqtri |
|- ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } |
42 |
|
2wlklem |
|- ( A. k e. { 0 , 1 } ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } <-> ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) |
43 |
27 41 42
|
mpbir2an |
|- A. k e. { 0 , 1 } ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } |
44 |
5 2
|
2wlkdlem2 |
|- ( 0 ..^ ( # ` F ) ) = { 0 , 1 } |
45 |
44
|
raleqi |
|- ( A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } <-> A. k e. { 0 , 1 } ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) |
46 |
43 45
|
mpbir |
|- A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } |