| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wlkd.p |  |-  ( ph -> P e. Word _V ) | 
						
							| 2 |  | wlkd.f |  |-  ( ph -> F e. Word _V ) | 
						
							| 3 |  | wlkd.l |  |-  ( ph -> ( # ` P ) = ( ( # ` F ) + 1 ) ) | 
						
							| 4 |  | wlkd.e |  |-  ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) | 
						
							| 5 |  | wlkd.n |  |-  ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) | 
						
							| 6 |  | wlkd.g |  |-  ( ph -> G e. W ) | 
						
							| 7 |  | wlkd.v |  |-  V = ( Vtx ` G ) | 
						
							| 8 |  | wlkd.i |  |-  I = ( iEdg ` G ) | 
						
							| 9 |  | wlkd.a |  |-  ( ph -> A. k e. ( 0 ... ( # ` F ) ) ( P ` k ) e. V ) | 
						
							| 10 | 1 2 3 4 | wlkdlem3 |  |-  ( ph -> F e. Word dom I ) | 
						
							| 11 | 1 2 3 9 | wlkdlem1 |  |-  ( ph -> P : ( 0 ... ( # ` F ) ) --> V ) | 
						
							| 12 | 1 2 3 4 5 | wlkdlem4 |  |-  ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) | 
						
							| 13 | 7 8 | iswlk |  |-  ( ( G e. W /\ F e. Word _V /\ P e. Word _V ) -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) | 
						
							| 14 | 6 2 1 13 | syl3anc |  |-  ( ph -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) | 
						
							| 15 | 10 11 12 14 | mpbir3and |  |-  ( ph -> F ( Walks ` G ) P ) |