Step |
Hyp |
Ref |
Expression |
1 |
|
wlkd.p |
|- ( ph -> P e. Word _V ) |
2 |
|
wlkd.f |
|- ( ph -> F e. Word _V ) |
3 |
|
wlkd.l |
|- ( ph -> ( # ` P ) = ( ( # ` F ) + 1 ) ) |
4 |
|
wlkd.e |
|- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) |
5 |
|
wlkd.n |
|- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |
6 |
|
wlkd.g |
|- ( ph -> G e. W ) |
7 |
|
wlkd.v |
|- V = ( Vtx ` G ) |
8 |
|
wlkd.i |
|- I = ( iEdg ` G ) |
9 |
|
wlkd.a |
|- ( ph -> A. k e. ( 0 ... ( # ` F ) ) ( P ` k ) e. V ) |
10 |
1 2 3 4
|
wlkdlem3 |
|- ( ph -> F e. Word dom I ) |
11 |
1 2 3 9
|
wlkdlem1 |
|- ( ph -> P : ( 0 ... ( # ` F ) ) --> V ) |
12 |
1 2 3 4 5
|
wlkdlem4 |
|- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
13 |
7 8
|
iswlk |
|- ( ( G e. W /\ F e. Word _V /\ P e. Word _V ) -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) |
14 |
6 2 1 13
|
syl3anc |
|- ( ph -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) |
15 |
10 11 12 14
|
mpbir3and |
|- ( ph -> F ( Walks ` G ) P ) |