| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wlkd.p |  |-  ( ph -> P e. Word _V ) | 
						
							| 2 |  | wlkd.f |  |-  ( ph -> F e. Word _V ) | 
						
							| 3 |  | wlkd.l |  |-  ( ph -> ( # ` P ) = ( ( # ` F ) + 1 ) ) | 
						
							| 4 |  | wlkdlem1.v |  |-  ( ph -> A. k e. ( 0 ... ( # ` F ) ) ( P ` k ) e. V ) | 
						
							| 5 |  | wrdf |  |-  ( P e. Word _V -> P : ( 0 ..^ ( # ` P ) ) --> _V ) | 
						
							| 6 | 1 5 | syl |  |-  ( ph -> P : ( 0 ..^ ( # ` P ) ) --> _V ) | 
						
							| 7 | 3 | oveq2d |  |-  ( ph -> ( 0 ..^ ( # ` P ) ) = ( 0 ..^ ( ( # ` F ) + 1 ) ) ) | 
						
							| 8 |  | lencl |  |-  ( F e. Word _V -> ( # ` F ) e. NN0 ) | 
						
							| 9 | 2 8 | syl |  |-  ( ph -> ( # ` F ) e. NN0 ) | 
						
							| 10 | 9 | nn0zd |  |-  ( ph -> ( # ` F ) e. ZZ ) | 
						
							| 11 |  | fzval3 |  |-  ( ( # ` F ) e. ZZ -> ( 0 ... ( # ` F ) ) = ( 0 ..^ ( ( # ` F ) + 1 ) ) ) | 
						
							| 12 | 10 11 | syl |  |-  ( ph -> ( 0 ... ( # ` F ) ) = ( 0 ..^ ( ( # ` F ) + 1 ) ) ) | 
						
							| 13 | 7 12 | eqtr4d |  |-  ( ph -> ( 0 ..^ ( # ` P ) ) = ( 0 ... ( # ` F ) ) ) | 
						
							| 14 | 13 | feq2d |  |-  ( ph -> ( P : ( 0 ..^ ( # ` P ) ) --> _V <-> P : ( 0 ... ( # ` F ) ) --> _V ) ) | 
						
							| 15 |  | ssv |  |-  V C_ _V | 
						
							| 16 |  | fcdmssb |  |-  ( ( V C_ _V /\ A. k e. ( 0 ... ( # ` F ) ) ( P ` k ) e. V ) -> ( P : ( 0 ... ( # ` F ) ) --> _V <-> P : ( 0 ... ( # ` F ) ) --> V ) ) | 
						
							| 17 | 15 4 16 | sylancr |  |-  ( ph -> ( P : ( 0 ... ( # ` F ) ) --> _V <-> P : ( 0 ... ( # ` F ) ) --> V ) ) | 
						
							| 18 | 14 17 | bitrd |  |-  ( ph -> ( P : ( 0 ..^ ( # ` P ) ) --> _V <-> P : ( 0 ... ( # ` F ) ) --> V ) ) | 
						
							| 19 | 6 18 | mpbid |  |-  ( ph -> P : ( 0 ... ( # ` F ) ) --> V ) |