Step |
Hyp |
Ref |
Expression |
1 |
|
wlkpvtx.v |
|- V = ( Vtx ` G ) |
2 |
1
|
wlkp |
|- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> V ) |
3 |
|
wlkcl |
|- ( F ( Walks ` G ) P -> ( # ` F ) e. NN0 ) |
4 |
|
0elfz |
|- ( ( # ` F ) e. NN0 -> 0 e. ( 0 ... ( # ` F ) ) ) |
5 |
|
ffvelrn |
|- ( ( P : ( 0 ... ( # ` F ) ) --> V /\ 0 e. ( 0 ... ( # ` F ) ) ) -> ( P ` 0 ) e. V ) |
6 |
4 5
|
sylan2 |
|- ( ( P : ( 0 ... ( # ` F ) ) --> V /\ ( # ` F ) e. NN0 ) -> ( P ` 0 ) e. V ) |
7 |
|
nn0fz0 |
|- ( ( # ` F ) e. NN0 <-> ( # ` F ) e. ( 0 ... ( # ` F ) ) ) |
8 |
|
ffvelrn |
|- ( ( P : ( 0 ... ( # ` F ) ) --> V /\ ( # ` F ) e. ( 0 ... ( # ` F ) ) ) -> ( P ` ( # ` F ) ) e. V ) |
9 |
7 8
|
sylan2b |
|- ( ( P : ( 0 ... ( # ` F ) ) --> V /\ ( # ` F ) e. NN0 ) -> ( P ` ( # ` F ) ) e. V ) |
10 |
6 9
|
jca |
|- ( ( P : ( 0 ... ( # ` F ) ) --> V /\ ( # ` F ) e. NN0 ) -> ( ( P ` 0 ) e. V /\ ( P ` ( # ` F ) ) e. V ) ) |
11 |
2 3 10
|
syl2anc |
|- ( F ( Walks ` G ) P -> ( ( P ` 0 ) e. V /\ ( P ` ( # ` F ) ) e. V ) ) |