Metamath Proof Explorer


Theorem wlkiswwlks

Description: A walk as word corresponds to a walk in a simple pseudograph. (Contributed by Alexander van der Vekens, 21-Jul-2018) (Revised by AV, 10-Apr-2021)

Ref Expression
Assertion wlkiswwlks
|- ( G e. USPGraph -> ( E. f f ( Walks ` G ) P <-> P e. ( WWalks ` G ) ) )

Proof

Step Hyp Ref Expression
1 uspgrupgr
 |-  ( G e. USPGraph -> G e. UPGraph )
2 wlkiswwlks1
 |-  ( G e. UPGraph -> ( f ( Walks ` G ) P -> P e. ( WWalks ` G ) ) )
3 1 2 syl
 |-  ( G e. USPGraph -> ( f ( Walks ` G ) P -> P e. ( WWalks ` G ) ) )
4 3 exlimdv
 |-  ( G e. USPGraph -> ( E. f f ( Walks ` G ) P -> P e. ( WWalks ` G ) ) )
5 wlkiswwlks2
 |-  ( G e. USPGraph -> ( P e. ( WWalks ` G ) -> E. f f ( Walks ` G ) P ) )
6 4 5 impbid
 |-  ( G e. USPGraph -> ( E. f f ( Walks ` G ) P <-> P e. ( WWalks ` G ) ) )