| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wlkiswwlks2lem.f |  |-  F = ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) |-> ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) ) | 
						
							| 2 |  | lencl |  |-  ( P e. Word V -> ( # ` P ) e. NN0 ) | 
						
							| 3 |  | elnnnn0c |  |-  ( ( # ` P ) e. NN <-> ( ( # ` P ) e. NN0 /\ 1 <_ ( # ` P ) ) ) | 
						
							| 4 | 3 | biimpri |  |-  ( ( ( # ` P ) e. NN0 /\ 1 <_ ( # ` P ) ) -> ( # ` P ) e. NN ) | 
						
							| 5 | 2 4 | sylan |  |-  ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( # ` P ) e. NN ) | 
						
							| 6 |  | nnm1nn0 |  |-  ( ( # ` P ) e. NN -> ( ( # ` P ) - 1 ) e. NN0 ) | 
						
							| 7 | 5 6 | syl |  |-  ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( ( # ` P ) - 1 ) e. NN0 ) | 
						
							| 8 |  | fvex |  |-  ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) e. _V | 
						
							| 9 | 8 1 | fnmpti |  |-  F Fn ( 0 ..^ ( ( # ` P ) - 1 ) ) | 
						
							| 10 |  | ffzo0hash |  |-  ( ( ( ( # ` P ) - 1 ) e. NN0 /\ F Fn ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> ( # ` F ) = ( ( # ` P ) - 1 ) ) | 
						
							| 11 | 7 9 10 | sylancl |  |-  ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( # ` F ) = ( ( # ` P ) - 1 ) ) |