Step |
Hyp |
Ref |
Expression |
1 |
|
wlkiswwlks2lem.f |
|- F = ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) |-> ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) ) |
2 |
|
lencl |
|- ( P e. Word V -> ( # ` P ) e. NN0 ) |
3 |
|
elnnnn0c |
|- ( ( # ` P ) e. NN <-> ( ( # ` P ) e. NN0 /\ 1 <_ ( # ` P ) ) ) |
4 |
3
|
biimpri |
|- ( ( ( # ` P ) e. NN0 /\ 1 <_ ( # ` P ) ) -> ( # ` P ) e. NN ) |
5 |
2 4
|
sylan |
|- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( # ` P ) e. NN ) |
6 |
|
nnm1nn0 |
|- ( ( # ` P ) e. NN -> ( ( # ` P ) - 1 ) e. NN0 ) |
7 |
5 6
|
syl |
|- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( ( # ` P ) - 1 ) e. NN0 ) |
8 |
|
fvex |
|- ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) e. _V |
9 |
8 1
|
fnmpti |
|- F Fn ( 0 ..^ ( ( # ` P ) - 1 ) ) |
10 |
|
ffzo0hash |
|- ( ( ( ( # ` P ) - 1 ) e. NN0 /\ F Fn ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> ( # ` F ) = ( ( # ` P ) - 1 ) ) |
11 |
7 9 10
|
sylancl |
|- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( # ` F ) = ( ( # ` P ) - 1 ) ) |