| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wlkiswwlks2lem.f |  |-  F = ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) |-> ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) ) | 
						
							| 2 |  | fveq2 |  |-  ( x = I -> ( P ` x ) = ( P ` I ) ) | 
						
							| 3 |  | fvoveq1 |  |-  ( x = I -> ( P ` ( x + 1 ) ) = ( P ` ( I + 1 ) ) ) | 
						
							| 4 | 2 3 | preq12d |  |-  ( x = I -> { ( P ` x ) , ( P ` ( x + 1 ) ) } = { ( P ` I ) , ( P ` ( I + 1 ) ) } ) | 
						
							| 5 | 4 | fveq2d |  |-  ( x = I -> ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) = ( `' E ` { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) | 
						
							| 6 |  | simpr |  |-  ( ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) | 
						
							| 7 |  | fvexd |  |-  ( ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> ( `' E ` { ( P ` I ) , ( P ` ( I + 1 ) ) } ) e. _V ) | 
						
							| 8 | 1 5 6 7 | fvmptd3 |  |-  ( ( ( # ` P ) e. NN0 /\ I e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> ( F ` I ) = ( `' E ` { ( P ` I ) , ( P ` ( I + 1 ) ) } ) ) |