| Step |
Hyp |
Ref |
Expression |
| 1 |
|
wlkiswwlks2lem.f |
|- F = ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) |-> ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) ) |
| 2 |
|
wlkiswwlks2lem.e |
|- E = ( iEdg ` G ) |
| 3 |
1
|
wlkiswwlks2lem1 |
|- ( ( P e. Word V /\ 1 <_ ( # ` P ) ) -> ( # ` F ) = ( ( # ` P ) - 1 ) ) |
| 4 |
3
|
3adant1 |
|- ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) -> ( # ` F ) = ( ( # ` P ) - 1 ) ) |
| 5 |
|
lencl |
|- ( P e. Word V -> ( # ` P ) e. NN0 ) |
| 6 |
5
|
3ad2ant2 |
|- ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) -> ( # ` P ) e. NN0 ) |
| 7 |
1
|
wlkiswwlks2lem2 |
|- ( ( ( # ` P ) e. NN0 /\ i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> ( F ` i ) = ( `' E ` { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
| 8 |
6 7
|
sylan |
|- ( ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) /\ i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> ( F ` i ) = ( `' E ` { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
| 9 |
8
|
adantr |
|- ( ( ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) /\ i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) /\ { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) -> ( F ` i ) = ( `' E ` { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
| 10 |
9
|
fveq2d |
|- ( ( ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) /\ i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) /\ { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) -> ( E ` ( F ` i ) ) = ( E ` ( `' E ` { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) |
| 11 |
2
|
uspgrf1oedg |
|- ( G e. USPGraph -> E : dom E -1-1-onto-> ( Edg ` G ) ) |
| 12 |
2
|
rneqi |
|- ran E = ran ( iEdg ` G ) |
| 13 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
| 14 |
12 13
|
eqtr4i |
|- ran E = ( Edg ` G ) |
| 15 |
|
f1oeq3 |
|- ( ran E = ( Edg ` G ) -> ( E : dom E -1-1-onto-> ran E <-> E : dom E -1-1-onto-> ( Edg ` G ) ) ) |
| 16 |
14 15
|
ax-mp |
|- ( E : dom E -1-1-onto-> ran E <-> E : dom E -1-1-onto-> ( Edg ` G ) ) |
| 17 |
11 16
|
sylibr |
|- ( G e. USPGraph -> E : dom E -1-1-onto-> ran E ) |
| 18 |
17
|
3ad2ant1 |
|- ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) -> E : dom E -1-1-onto-> ran E ) |
| 19 |
18
|
adantr |
|- ( ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) /\ i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> E : dom E -1-1-onto-> ran E ) |
| 20 |
|
f1ocnvfv2 |
|- ( ( E : dom E -1-1-onto-> ran E /\ { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) -> ( E ` ( `' E ` { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) |
| 21 |
19 20
|
sylan |
|- ( ( ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) /\ i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) /\ { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) -> ( E ` ( `' E ` { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) |
| 22 |
10 21
|
eqtrd |
|- ( ( ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) /\ i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) /\ { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) -> ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) |
| 23 |
22
|
ex |
|- ( ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) /\ i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E -> ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
| 24 |
23
|
ralimdva |
|- ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) -> ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
| 25 |
|
oveq2 |
|- ( ( # ` F ) = ( ( # ` P ) - 1 ) -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ ( ( # ` P ) - 1 ) ) ) |
| 26 |
25
|
raleqdv |
|- ( ( # ` F ) = ( ( # ` P ) - 1 ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
| 27 |
26
|
imbi2d |
|- ( ( # ` F ) = ( ( # ` P ) - 1 ) -> ( ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E -> A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) <-> ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) |
| 28 |
24 27
|
imbitrrid |
|- ( ( # ` F ) = ( ( # ` P ) - 1 ) -> ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) -> ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E -> A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) |
| 29 |
4 28
|
mpcom |
|- ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) -> ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E -> A. i e. ( 0 ..^ ( # ` F ) ) ( E ` ( F ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |