Step |
Hyp |
Ref |
Expression |
1 |
|
wlkiswwlks2lem.f |
|- F = ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) |-> ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) ) |
2 |
|
wlkiswwlks2lem.e |
|- E = ( iEdg ` G ) |
3 |
2
|
uspgrf1oedg |
|- ( G e. USPGraph -> E : dom E -1-1-onto-> ( Edg ` G ) ) |
4 |
2
|
rneqi |
|- ran E = ran ( iEdg ` G ) |
5 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
6 |
4 5
|
eqtr4i |
|- ran E = ( Edg ` G ) |
7 |
6
|
a1i |
|- ( G e. USPGraph -> ran E = ( Edg ` G ) ) |
8 |
7
|
f1oeq3d |
|- ( G e. USPGraph -> ( E : dom E -1-1-onto-> ran E <-> E : dom E -1-1-onto-> ( Edg ` G ) ) ) |
9 |
3 8
|
mpbird |
|- ( G e. USPGraph -> E : dom E -1-1-onto-> ran E ) |
10 |
9
|
3ad2ant1 |
|- ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) -> E : dom E -1-1-onto-> ran E ) |
11 |
10
|
ad2antrr |
|- ( ( ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) /\ x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> E : dom E -1-1-onto-> ran E ) |
12 |
|
simpr |
|- ( ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) /\ x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) |
13 |
|
fveq2 |
|- ( i = x -> ( P ` i ) = ( P ` x ) ) |
14 |
|
fvoveq1 |
|- ( i = x -> ( P ` ( i + 1 ) ) = ( P ` ( x + 1 ) ) ) |
15 |
13 14
|
preq12d |
|- ( i = x -> { ( P ` i ) , ( P ` ( i + 1 ) ) } = { ( P ` x ) , ( P ` ( x + 1 ) ) } ) |
16 |
15
|
eleq1d |
|- ( i = x -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E <-> { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ran E ) ) |
17 |
16
|
adantl |
|- ( ( ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) /\ x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) /\ i = x ) -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E <-> { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ran E ) ) |
18 |
12 17
|
rspcdv |
|- ( ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) /\ x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E -> { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ran E ) ) |
19 |
18
|
impancom |
|- ( ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) -> ( x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) -> { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ran E ) ) |
20 |
19
|
imp |
|- ( ( ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) /\ x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ran E ) |
21 |
|
f1ocnvdm |
|- ( ( E : dom E -1-1-onto-> ran E /\ { ( P ` x ) , ( P ` ( x + 1 ) ) } e. ran E ) -> ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) e. dom E ) |
22 |
11 20 21
|
syl2anc |
|- ( ( ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) /\ x e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ) -> ( `' E ` { ( P ` x ) , ( P ` ( x + 1 ) ) } ) e. dom E ) |
23 |
22 1
|
fmptd |
|- ( ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) -> F : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom E ) |
24 |
|
iswrdi |
|- ( F : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom E -> F e. Word dom E ) |
25 |
23 24
|
syl |
|- ( ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E ) -> F e. Word dom E ) |
26 |
25
|
ex |
|- ( ( G e. USPGraph /\ P e. Word V /\ 1 <_ ( # ` P ) ) -> ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran E -> F e. Word dom E ) ) |