Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
2 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
3 |
1 2
|
iswwlks |
|- ( P e. ( WWalks ` G ) <-> ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
4 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
5 |
4
|
eleq2i |
|- ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran ( iEdg ` G ) ) |
6 |
|
upgruhgr |
|- ( G e. UPGraph -> G e. UHGraph ) |
7 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
8 |
7
|
uhgrfun |
|- ( G e. UHGraph -> Fun ( iEdg ` G ) ) |
9 |
6 8
|
syl |
|- ( G e. UPGraph -> Fun ( iEdg ` G ) ) |
10 |
9
|
adantl |
|- ( ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) /\ G e. UPGraph ) -> Fun ( iEdg ` G ) ) |
11 |
|
elrnrexdm |
|- ( Fun ( iEdg ` G ) -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran ( iEdg ` G ) -> E. x e. dom ( iEdg ` G ) { ( P ` i ) , ( P ` ( i + 1 ) ) } = ( ( iEdg ` G ) ` x ) ) ) |
12 |
|
eqcom |
|- ( ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> { ( P ` i ) , ( P ` ( i + 1 ) ) } = ( ( iEdg ` G ) ` x ) ) |
13 |
12
|
rexbii |
|- ( E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> E. x e. dom ( iEdg ` G ) { ( P ` i ) , ( P ` ( i + 1 ) ) } = ( ( iEdg ` G ) ` x ) ) |
14 |
11 13
|
syl6ibr |
|- ( Fun ( iEdg ` G ) -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran ( iEdg ` G ) -> E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
15 |
10 14
|
syl |
|- ( ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) /\ G e. UPGraph ) -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ran ( iEdg ` G ) -> E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
16 |
5 15
|
syl5bi |
|- ( ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) /\ G e. UPGraph ) -> ( { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) -> E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
17 |
16
|
ralimdv |
|- ( ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) /\ G e. UPGraph ) -> ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
18 |
17
|
ex |
|- ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) -> ( G e. UPGraph -> ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) |
19 |
18
|
com23 |
|- ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) -> ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) -> ( G e. UPGraph -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) |
20 |
19
|
3impia |
|- ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> ( G e. UPGraph -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
21 |
20
|
impcom |
|- ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) |
22 |
|
ovex |
|- ( 0 ..^ ( ( # ` P ) - 1 ) ) e. _V |
23 |
|
fvex |
|- ( iEdg ` G ) e. _V |
24 |
23
|
dmex |
|- dom ( iEdg ` G ) e. _V |
25 |
|
fveqeq2 |
|- ( x = ( f ` i ) -> ( ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
26 |
22 24 25
|
ac6 |
|- ( A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) E. x e. dom ( iEdg ` G ) ( ( iEdg ` G ) ` x ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } -> E. f ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
27 |
21 26
|
syl |
|- ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> E. f ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
28 |
|
iswrdi |
|- ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> f e. Word dom ( iEdg ` G ) ) |
29 |
28
|
adantr |
|- ( ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> f e. Word dom ( iEdg ` G ) ) |
30 |
29
|
adantl |
|- ( ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) /\ ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) -> f e. Word dom ( iEdg ` G ) ) |
31 |
|
len0nnbi |
|- ( P e. Word ( Vtx ` G ) -> ( P =/= (/) <-> ( # ` P ) e. NN ) ) |
32 |
31
|
biimpac |
|- ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) -> ( # ` P ) e. NN ) |
33 |
|
wrdf |
|- ( P e. Word ( Vtx ` G ) -> P : ( 0 ..^ ( # ` P ) ) --> ( Vtx ` G ) ) |
34 |
|
nnz |
|- ( ( # ` P ) e. NN -> ( # ` P ) e. ZZ ) |
35 |
|
fzoval |
|- ( ( # ` P ) e. ZZ -> ( 0 ..^ ( # ` P ) ) = ( 0 ... ( ( # ` P ) - 1 ) ) ) |
36 |
34 35
|
syl |
|- ( ( # ` P ) e. NN -> ( 0 ..^ ( # ` P ) ) = ( 0 ... ( ( # ` P ) - 1 ) ) ) |
37 |
36
|
adantr |
|- ( ( ( # ` P ) e. NN /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( 0 ..^ ( # ` P ) ) = ( 0 ... ( ( # ` P ) - 1 ) ) ) |
38 |
|
nnm1nn0 |
|- ( ( # ` P ) e. NN -> ( ( # ` P ) - 1 ) e. NN0 ) |
39 |
|
fnfzo0hash |
|- ( ( ( ( # ` P ) - 1 ) e. NN0 /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( # ` f ) = ( ( # ` P ) - 1 ) ) |
40 |
38 39
|
sylan |
|- ( ( ( # ` P ) e. NN /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( # ` f ) = ( ( # ` P ) - 1 ) ) |
41 |
40
|
eqcomd |
|- ( ( ( # ` P ) e. NN /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( ( # ` P ) - 1 ) = ( # ` f ) ) |
42 |
41
|
oveq2d |
|- ( ( ( # ` P ) e. NN /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( 0 ... ( ( # ` P ) - 1 ) ) = ( 0 ... ( # ` f ) ) ) |
43 |
37 42
|
eqtrd |
|- ( ( ( # ` P ) e. NN /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( 0 ..^ ( # ` P ) ) = ( 0 ... ( # ` f ) ) ) |
44 |
43
|
feq2d |
|- ( ( ( # ` P ) e. NN /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( P : ( 0 ..^ ( # ` P ) ) --> ( Vtx ` G ) <-> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) ) |
45 |
44
|
biimpcd |
|- ( P : ( 0 ..^ ( # ` P ) ) --> ( Vtx ` G ) -> ( ( ( # ` P ) e. NN /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) ) |
46 |
45
|
expd |
|- ( P : ( 0 ..^ ( # ` P ) ) --> ( Vtx ` G ) -> ( ( # ` P ) e. NN -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) ) ) |
47 |
33 46
|
syl |
|- ( P e. Word ( Vtx ` G ) -> ( ( # ` P ) e. NN -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) ) ) |
48 |
47
|
adantl |
|- ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) -> ( ( # ` P ) e. NN -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) ) ) |
49 |
32 48
|
mpd |
|- ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) ) |
50 |
49
|
3adant3 |
|- ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) ) |
51 |
50
|
adantl |
|- ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) ) |
52 |
51
|
com12 |
|- ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) ) |
53 |
52
|
adantr |
|- ( ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) ) |
54 |
53
|
impcom |
|- ( ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) /\ ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) -> P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) ) |
55 |
|
simpr |
|- ( ( ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) |
56 |
32 40
|
sylan |
|- ( ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( # ` f ) = ( ( # ` P ) - 1 ) ) |
57 |
56
|
oveq2d |
|- ( ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( 0 ..^ ( # ` f ) ) = ( 0 ..^ ( ( # ` P ) - 1 ) ) ) |
58 |
57
|
ex |
|- ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) ) -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> ( 0 ..^ ( # ` f ) ) = ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) |
59 |
58
|
3adant3 |
|- ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> ( 0 ..^ ( # ` f ) ) = ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) |
60 |
59
|
adantl |
|- ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) -> ( 0 ..^ ( # ` f ) ) = ( 0 ..^ ( ( # ` P ) - 1 ) ) ) ) |
61 |
60
|
imp |
|- ( ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) -> ( 0 ..^ ( # ` f ) ) = ( 0 ..^ ( ( # ` P ) - 1 ) ) ) |
62 |
61
|
adantr |
|- ( ( ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> ( 0 ..^ ( # ` f ) ) = ( 0 ..^ ( ( # ` P ) - 1 ) ) ) |
63 |
62
|
raleqdv |
|- ( ( ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> ( A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } <-> A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
64 |
55 63
|
mpbird |
|- ( ( ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) /\ f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) |
65 |
64
|
anasss |
|- ( ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) /\ ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) -> A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) |
66 |
30 54 65
|
3jca |
|- ( ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) /\ ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) -> ( f e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
67 |
66
|
ex |
|- ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> ( ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> ( f e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) |
68 |
67
|
eximdv |
|- ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> ( E. f ( f : ( 0 ..^ ( ( # ` P ) - 1 ) ) --> dom ( iEdg ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) -> E. f ( f e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) |
69 |
27 68
|
mpd |
|- ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> E. f ( f e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) |
70 |
1 7
|
upgriswlk |
|- ( G e. UPGraph -> ( f ( Walks ` G ) P <-> ( f e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) |
71 |
70
|
adantr |
|- ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> ( f ( Walks ` G ) P <-> ( f e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) |
72 |
71
|
exbidv |
|- ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> ( E. f f ( Walks ` G ) P <-> E. f ( f e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` f ) ) --> ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( # ` f ) ) ( ( iEdg ` G ) ` ( f ` i ) ) = { ( P ` i ) , ( P ` ( i + 1 ) ) } ) ) ) |
73 |
69 72
|
mpbird |
|- ( ( G e. UPGraph /\ ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> E. f f ( Walks ` G ) P ) |
74 |
73
|
ex |
|- ( G e. UPGraph -> ( ( P =/= (/) /\ P e. Word ( Vtx ` G ) /\ A. i e. ( 0 ..^ ( ( # ` P ) - 1 ) ) { ( P ` i ) , ( P ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> E. f f ( Walks ` G ) P ) ) |
75 |
3 74
|
syl5bi |
|- ( G e. UPGraph -> ( P e. ( WWalks ` G ) -> E. f f ( Walks ` G ) P ) ) |