Step |
Hyp |
Ref |
Expression |
1 |
|
df-br |
|- ( F ( Walks ` G ) ( W ++ <" ( W ` 0 ) "> ) <-> <. F , ( W ++ <" ( W ` 0 ) "> ) >. e. ( Walks ` G ) ) |
2 |
|
wlkcl |
|- ( F ( Walks ` G ) ( W ++ <" ( W ` 0 ) "> ) -> ( # ` F ) e. NN0 ) |
3 |
|
wlklenvp1 |
|- ( F ( Walks ` G ) ( W ++ <" ( W ` 0 ) "> ) -> ( # ` ( W ++ <" ( W ` 0 ) "> ) ) = ( ( # ` F ) + 1 ) ) |
4 |
2 3
|
jca |
|- ( F ( Walks ` G ) ( W ++ <" ( W ` 0 ) "> ) -> ( ( # ` F ) e. NN0 /\ ( # ` ( W ++ <" ( W ` 0 ) "> ) ) = ( ( # ` F ) + 1 ) ) ) |
5 |
1 4
|
sylbir |
|- ( <. F , ( W ++ <" ( W ` 0 ) "> ) >. e. ( Walks ` G ) -> ( ( # ` F ) e. NN0 /\ ( # ` ( W ++ <" ( W ` 0 ) "> ) ) = ( ( # ` F ) + 1 ) ) ) |
6 |
|
ccatws1len |
|- ( W e. Word ( Vtx ` G ) -> ( # ` ( W ++ <" ( W ` 0 ) "> ) ) = ( ( # ` W ) + 1 ) ) |
7 |
6
|
eqeq1d |
|- ( W e. Word ( Vtx ` G ) -> ( ( # ` ( W ++ <" ( W ` 0 ) "> ) ) = ( ( # ` F ) + 1 ) <-> ( ( # ` W ) + 1 ) = ( ( # ` F ) + 1 ) ) ) |
8 |
|
eqcom |
|- ( ( ( # ` W ) + 1 ) = ( ( # ` F ) + 1 ) <-> ( ( # ` F ) + 1 ) = ( ( # ` W ) + 1 ) ) |
9 |
7 8
|
bitrdi |
|- ( W e. Word ( Vtx ` G ) -> ( ( # ` ( W ++ <" ( W ` 0 ) "> ) ) = ( ( # ` F ) + 1 ) <-> ( ( # ` F ) + 1 ) = ( ( # ` W ) + 1 ) ) ) |
10 |
9
|
adantr |
|- ( ( W e. Word ( Vtx ` G ) /\ ( # ` F ) e. NN0 ) -> ( ( # ` ( W ++ <" ( W ` 0 ) "> ) ) = ( ( # ` F ) + 1 ) <-> ( ( # ` F ) + 1 ) = ( ( # ` W ) + 1 ) ) ) |
11 |
|
nn0cn |
|- ( ( # ` F ) e. NN0 -> ( # ` F ) e. CC ) |
12 |
11
|
adantl |
|- ( ( W e. Word ( Vtx ` G ) /\ ( # ` F ) e. NN0 ) -> ( # ` F ) e. CC ) |
13 |
|
lencl |
|- ( W e. Word ( Vtx ` G ) -> ( # ` W ) e. NN0 ) |
14 |
13
|
nn0cnd |
|- ( W e. Word ( Vtx ` G ) -> ( # ` W ) e. CC ) |
15 |
14
|
adantr |
|- ( ( W e. Word ( Vtx ` G ) /\ ( # ` F ) e. NN0 ) -> ( # ` W ) e. CC ) |
16 |
|
1cnd |
|- ( ( W e. Word ( Vtx ` G ) /\ ( # ` F ) e. NN0 ) -> 1 e. CC ) |
17 |
12 15 16
|
addcan2d |
|- ( ( W e. Word ( Vtx ` G ) /\ ( # ` F ) e. NN0 ) -> ( ( ( # ` F ) + 1 ) = ( ( # ` W ) + 1 ) <-> ( # ` F ) = ( # ` W ) ) ) |
18 |
17
|
biimpd |
|- ( ( W e. Word ( Vtx ` G ) /\ ( # ` F ) e. NN0 ) -> ( ( ( # ` F ) + 1 ) = ( ( # ` W ) + 1 ) -> ( # ` F ) = ( # ` W ) ) ) |
19 |
10 18
|
sylbid |
|- ( ( W e. Word ( Vtx ` G ) /\ ( # ` F ) e. NN0 ) -> ( ( # ` ( W ++ <" ( W ` 0 ) "> ) ) = ( ( # ` F ) + 1 ) -> ( # ` F ) = ( # ` W ) ) ) |
20 |
19
|
expimpd |
|- ( W e. Word ( Vtx ` G ) -> ( ( ( # ` F ) e. NN0 /\ ( # ` ( W ++ <" ( W ` 0 ) "> ) ) = ( ( # ` F ) + 1 ) ) -> ( # ` F ) = ( # ` W ) ) ) |
21 |
5 20
|
syl5 |
|- ( W e. Word ( Vtx ` G ) -> ( <. F , ( W ++ <" ( W ` 0 ) "> ) >. e. ( Walks ` G ) -> ( # ` F ) = ( # ` W ) ) ) |